Optimal Domestic (and External) Sovereign Default

Pablo D'Erasmo¹ Enrique G. Mendoza

FRB Philadelphia

Univ. of Pennsylvania, NBER and PIER

December 18, 2016

 $^{^1}$ The views expressed here do not necessarily reflect those of the FRB Philadelphia or The Federal Reserve System.

 68 outright domestic defaults since 1750 in industrial and developing countries: forced conversions, reduced coupons and/or principal, suspension of payments

- 68 outright domestic defaults since 1750 in industrial and developing countries: forced conversions, reduced coupons and/or principal, suspension of payments
- Less frequent than external defaults (1 to 3 ratio), and all domestic defaults were also external

- 68 outright domestic defaults since 1750 in industrial and developing countries: forced conversions, reduced coupons and/or principal, suspension of payments
- Less frequent than external defaults (1 to 3 ratio), and all domestic defaults were also external
- 3. Domestic debt is a large fraction of public debt (2/3rds on average and higher in developed countries)

- 68 outright domestic defaults since 1750 in industrial and developing countries: forced conversions, reduced coupons and/or principal, suspension of payments
- Less frequent than external defaults (1 to 3 ratio), and all domestic defaults were also external
- 3. Domestic debt is a large fraction of public debt (2/3rds on average and higher in developed countries)
- 4. Public debt and spreads rise sharply before defaults

- 68 outright domestic defaults since 1750 in industrial and developing countries: forced conversions, reduced coupons and/or principal, suspension of payments
- Less frequent than external defaults (1 to 3 ratio), and all domestic defaults were also external
- 3. Domestic debt is a large fraction of public debt (2/3rds on average and higher in developed countries)
- 4. Public debt and spreads rise sharply before defaults
- 5. Largely a "forgotten" story in macroeconomics literature

Most Eurozone public debt held within Europe

- ▶ Most Eurozone public debt held within Europe
- Common currency rules out unilateral inflation as de facto default

- ▶ Most Eurozone public debt held within Europe
- ▶ Common currency rules out unilateral inflation as de facto default
- ► Euro institutions worry about effects of a member's default across Eurozone (wealth redistribution and damage to bond markets)

- ▶ Most Eurozone public debt held within Europe
- Common currency rules out unilateral inflation as de facto default
- ► Euro institutions worry about effects of a member's default across Eurozone (wealth redistribution and damage to bond markets)

- ▶ Most Eurozone public debt held within Europe
- ▶ Common currency rules out unilateral inflation as de facto default
- ► Euro institutions worry about effects of a member's default across Eurozone (wealth redistribution and damage to bond markets)
- Caveat: Eurozone is not a fiscal union

What we do in this paper

▶ Develop a framework to explain domestic sovereign default

00000

- ▶ Develop a framework to explain domestic sovereign default
- ► Het.-agents, incomplete-markets model with aggregate risk

What we do in this paper

- Develop a framework to explain domestic sovereign default
- ▶ Het.-agents, incomplete-markets model with aggregate risk
- Optimal debt and default (chosen by an utilitarian gov.) driven by distributional incentives and endogenous default costs due to self-insurance, liquidity and risk sharing value of debt

What we do in this paper

- ▶ Develop a framework to explain domestic sovereign default
- ▶ Het.-agents, incomplete-markets model with aggregate risk
- Optimal debt and default (chosen by an utilitarian gov.) driven by distributional incentives and endogenous default costs due to self-insurance, liquidity and risk sharing value of debt
- Calibrate to Spain and solve Recursive Markov Equilibrium (RME) without commitment

What we do in this paper

- Develop a framework to explain domestic sovereign default
- ▶ Het.-agents, incomplete-markets model with aggregate risk
- Optimal debt and default (chosen by an utilitarian gov.) driven by distributional incentives and endogenous default costs due to self-insurance, liquidity and risk sharing value of debt
- Calibrate to Spain and solve Recursive Markov Equilibrium (RME) without commitment
- Quantitative analysis via time series simulations (long-run, default events, business cycle correlations, sensitivity)

- Develop a framework to explain domestic sovereign default
- ► Het.-agents, incomplete-markets model with aggregate risk
- ▶ Optimal debt and default (chosen by an utilitarian gov.) driven by distributional incentives and endogenous default costs due to self-insurance, liquidity and risk sharing value of debt
- Calibrate to Spain and solve Recursive Markov Equilibrium (RME) without commitment
- Quantitative analysis via time series simulations (long-run, default events, business cycle correlations, sensitivity)
- Study model's mechanism in RME functions and perform sensitivity analysis

Examples

Questions

Introduction

00000

► Can distributional incentives and social value of debt support equilibria with public debt?

Questions

- ► Can distributional incentives and social value of debt support equilibria with public debt?
- ▶ If equilibria with debt exist, do they feature dynamics in which default risk and default events are observed?

Questions

- Can distributional incentives and social value of debt support equilibria with public debt?
- If equilibria with debt exist, do they feature dynamics in which default risk and default events are observed?
- ► Can the model account for key facts of debt-crisis dynamics (debt ratios, rising spreads, low default prob., foreign v. domestic debt)?

Main Findings

▶ RME supports debt exposed to default risk

Main Findings

- ▶ RME supports debt exposed to default risk
- Interaction of wealth dynamics, dispersion of individual default gains, social gain of default and default risk

- RME supports debt exposed to default risk
- Interaction of wealth dynamics, dispersion of individual default gains, social gain of default and default risk
- Mean and pre-crisis ratios of total, domestic, and external debt consistent with data, without exogenous exclusion

Main Findings

- RME supports debt exposed to default risk
- Interaction of wealth dynamics, dispersion of individual default gains, social gain of default and default risk
- Mean and pre-crisis ratios of total, domestic, and external debt consistent with data, without exogenous exclusion
- Consistent with key cyclical co-movements and features of debt-crisis dynamics

- RME supports debt exposed to default risk
- ► Interaction of wealth dynamics, dispersion of individual default gains, social gain of default and default risk
- Mean and pre-crisis ratios of total, domestic, and external debt consistent with data, without exogenous exclusion
- Consistent with key cyclical co-movements and features of debt-crisis dynamics
- ▶ Low Prob. of default and spreads during "non-crisis" periods and spreads peak at 700 basis points

Main Findings

- RME supports debt exposed to default risk
- Interaction of wealth dynamics, dispersion of individual default gains, social gain of default and default risk
- Mean and pre-crisis ratios of total, domestic, and external debt consistent with data, without exogenous exclusion
- Consistent with key cyclical co-movements and features of debt-crisis dynamics
- ▶ Low Prob. of default and spreads during "non-crisis" periods and spreads peak at 700 basis points
- ▶ Debt exhibits protracted fluctuations

Overview Model

- ► Introduce endogenous public debt and default in a model of heterogeneous agents, incomplete markets, and public debt with aggregate risk
- Agents face idiosyncratic income shocks y, agg. gov. exp. shocks g, and save in non-contingent, pari-passu gov. bonds with a no-borrowing constraint
- ▶ Utilitarian government pays for g, B and lump sum transfers τ with income taxes τ^y and by issuing debt B' at price q
- Public debt sold to both foreign and domestic creditors
- ▶ Study Recursive Markov Equilibrium without commitment

Environment: Households

▶ Unit measure of households with preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \quad u(c_t) = c_t^{1-\sigma}/(1-\sigma)$$

where $\beta \in (0,1)$ and c_t is individual consumption.

Agents receive income $y_t \in \mathcal{Y} = \{\underline{y}, \dots, \overline{y}\}$. Income is iid across households, and persistent with transition $\pi(y_{t+1}, y_t)$.

$$\log(y_{t+1}) = (1 - \rho_y)\mu_y + \rho_y \log(y_t) + u_t, \quad |\rho_y| < 1, \ u \sim N(0, \sigma_u)$$

Households (cont.)

▶ If the government does not default, the budget constraint is

$$c_t + q_t b_{t+1} = y_t (1 - \tau^y) + b_t + \tau_t^{d=0}$$

▶ If the government defaults, the market for public debt closes and re-opens next period. The budget constraint is:

$$c_t = y_t(1 - \tau^y) - \phi(g_t) + \tau_t^{d=1}$$

International Investors

- ▶ Pricing of gov. bonds is simplified by introducing risk-neutral competitive investors a'la Eaton-Gersovitz
- Expected profits:

$$\Omega_t = -q_t \hat{B}_{t+1} + \frac{(1 - p_t)}{(1 + \bar{r})} \hat{B}_{t+1}$$

▶ FOC yields arbitrage of expected risky return and international risk free rate \bar{r} .

Government

▶ Gov. expenditures follow exogenous Markov process $g_t \in \mathcal{G} \equiv \{\underline{g}, \dots, \overline{g}\}$ with transition prob. matrix $F(g_{t+1}, g_t)$, independent of income shocks.

$$\log(g_{t+1}) = (1 - \rho_g)\mu_g + \rho_g \log(g_t) + e_t, \quad |\rho_g| < 1, \ e \sim N(0, \sigma_e)$$

▶ If $d_t = 0$, the gov. budget constraint is:

$$\tau_t^{d=0} = \tau^y Y - B_t - g_t + q_t B_{t+1}$$

▶ If $d_t = 1$, the gov. budget constraint is:

$$\tau_t^{d=1} = \tau^y Y - g_t$$

Timing of Actions and Participation

- 1. Realizations of exogenous shocks y and g are observed.
- 2. Individual states $\{b,y\}$, wealth distribution $\Gamma_t(b,y)$ and aggregate states $\{B,g\}$ are known.
- 3. Income taxes are paid. Government chooses to default or not, $d_t \in \{0,1\}$:
 - If $d_t=0$, debt is repaid, new debt market opens, government sets supply of debt, lump-sum transfers satisfy GBC $(\tau_t=\tau^yY-B_t-g_t+q_tB_{t+1})$, agents and foreign investors choose bond holdings with price q_t .
 - ▶ If $d_t = 1$, debt is not paid to all creditors, output cost $\phi(g)$, debt market does not open, transfers satisfy GBC $(\tau_t = \tau^y Y g_t)$.
- 4. Agents consume, period t ends.

Recursive Markov Competitive Eq. (given gov. policies)

Given $\Gamma_0(b,y)$, d(B,g), B'(B,g), and $\tau^d(B',B,g)$, a **Recursive Markov Equilibrium** (RMCE) is a value function, households' decision rules, bond price and transition function $H^d(\Gamma,B,g,g')$ such that:

- 1. Given prices and policies, the value function and saving decision rule solve the households' problem HH problem
- 2. The foreign investor's arbitrage condition holds Inv. problem
- 3. The distribution evolves according to $H^{d\in\{0,1\}}(\Gamma,B,g,g')$
- 4. The government budget constraint is satisfied period by period
- 5. The asset market clears: $\hat{B}' = B^{d'} B'$
- 6. The aggregate resource constraint is satisfied oggregates

Government's Default Decision

$$\max_{d \in \{0,1\}} \left\{ W^{d=0}(B,g), W^{d=1}(g) \right\}$$

Government's Default Decision

$$\max_{d \in \{0,1\}} \left\{ W^{d=0}(B,g), W^{d=1}(g) \right\}$$

Social Welfare Functions:

$$W^{d=0}(B,g) = \int_{\mathcal{Y}\times\mathcal{B}} V^{d=0}(b,y,B,g) d\omega(b,y),$$

$$W^{d=1}(g) = \int_{\mathcal{Y}\times\mathcal{B}} V^{d=1}(y,g) d\omega(b,y).$$

Welfare weights are given by joint cdf.:

$$\omega(b,y) = \sum_{y_i \le y} \pi^*(y_i) \left(1 - e^{-\frac{b}{\overline{\omega}}} \right)$$

Government's Debt Decision

lacktriangle The value for each household of an alternative debt level \tilde{B}'

$$\begin{split} \tilde{V}(b,y,B,g,\tilde{B}') &= \max_{\{c \geq 0, b' \geq 0\}} u(c) + \beta E_{(y',g')|(y,g)}[V(b',y',\tilde{B}',g')] \\ \text{s.t. } c + q(\tilde{B}',g)b' &= b + y(1-\tau^y) + \tau(\tilde{B}',B,g) \end{split}$$

▶ The optimal government policy is the solution to:

$$\max_{\tilde{B}'} \int_{\mathcal{Y} \times \mathcal{B}} \tilde{V}(b, y, B, g, \tilde{B}') d\omega(b, y).$$

Introduction

Government's Debt Decision

lacktriangle The value for each household of an alternative debt level \tilde{B}'

$$\begin{split} \tilde{V}(b,y,B,g,\tilde{B}') &= \max_{\{c \geq 0, b' \geq 0\}} u(c) + \beta E_{(y',g')|(y,g)}[V(b',y',\tilde{B}',g')] \\ \text{s.t. } c + q(\tilde{B}',g)b' &= b + y(1-\tau^y) + \tau(\tilde{B}',B,g) \end{split}$$

▶ The optimal government policy is the solution to:

$$\max_{\tilde{B}'} \int_{\mathcal{Y} \times \mathcal{B}} \tilde{V}(b, y, B, g, \tilde{B}') d\omega(b, y).$$

A Recursive Markov Equilibrium with Endogenous Policies is an RMCE for which B'(B,g) and d(B,g) are the optimal debt and default decision rules.

Eq. Implications I: Demand for Bonds

 \blacktriangleright Assuming differentiability, FOC with respect to b':

$$u'(c) \le \beta E_{(y',g')|(y,g)} \left[(1 - d(B',g')) \frac{u'(c')}{q(B',g)} \right]$$

with equality if b' > 0

- lacktriangle Larger default set reduces the expected marginal benefit of b'
- ▶ Higher default prob. lowers b', except for high enough (b,y), who demand more bonds at higher risk premia
- ▶ Even if d' = 0, marginal benefit affected by future default risk (reduces bond demand for most (b, y))

Introduction

• Using $\tilde{b} = (b - B)$, agent's and gov. budget constraint imply:

$$c = y + \tilde{b} - q(B', g)\tilde{b}' - \tau^y(y - Y) - g$$

$$\tilde{b}' \ge -B'$$

Eq. Implications II: Public Debt for Liquidity

• Using $\tilde{b} = (b - B)$, agent's and gov. budget constraint imply:

$$c = y + \tilde{b} - q(B', g)\tilde{b}' - \tau^{y}(y - Y) - g$$

$$\tilde{b}' \ge -B'$$

ightharpoonup Higher debt issuance B' relaxes borrowing constraints

Eq. Implications II: Public Debt for Liquidity

lacktriangle Using $ilde{b}=(b-B)$, agent's and gov. budget constraint imply:

$$c = y + \tilde{b} - q(B', g)\tilde{b}' - \tau^{y}(y - Y) - g$$

$$\tilde{b}' \ge -B'$$

- ightharpoonup Higher debt issuance B' relaxes borrowing constraints
- For sufficiently high y, regardless of b, new debt provides highly-valued asset used to build precautionary savings

Eq. Implications II: Public Debt for Liquidity

lacktriangle Using $\tilde{b}=(b-B)$, agent's and gov. budget constraint imply:

$$\begin{array}{rcl} c & = & y + \tilde{b} - q(B', g)\tilde{b}' - \tau^y(y - Y) - g\\ \tilde{b}' & \geq & -B' \end{array}$$

- ightharpoonup Higher debt issuance B' relaxes borrowing constraints
- ► For sufficiently high *y*, regardless of *b*, new debt provides highly-valued asset used to build precautionary savings
- Debt redistributes resources
 - Repaying B favors the wealthy (agents with $\tilde{b} > 0$)
 - Issuing B' favors the poor (agents with $\tilde{b'} < 0$)
 - ▶ Default risk erodes the effect of B': q falls as B' rises, which affects wealth distribution and default choice (feedback mechanism)

• Using $\tilde{b} = (b - B)$, agent's and gov. budget constraint imply:

$$\begin{array}{rcl} c & = & y + \tilde{b} - q(B',g)\tilde{b}' - \tau^y(y - Y) - g\\ \tilde{b}' & \geq & -B' \end{array}$$

- ightharpoonup Higher debt issuance B' relaxes borrowing constraints
- ► For sufficiently high *y*, regardless of *b*, new debt provides highly-valued asset used to build precautionary savings
- Debt redistributes resources
 - Repaying B favors the wealthy (agents with $\tilde{b} > 0$)
 - Issuing B' favors the poor (agents with $\tilde{b'} < 0$)
 - ▶ Default risk erodes the effect of B': q falls as B' rises, which affects wealth distribution and default choice (feedback mechanism)
- ▶ Income tax insures against idiosyncratic shocks

Eq. Implications III: Default Incentives

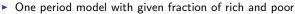
► Consumption differences in repayment v. default states:

$$\Delta c \equiv c^{d=0} - c^{d=1} = \tilde{b} - q(B', g)\tilde{b}' + \phi(g)$$

lacktriangle The two first terms in RHS reflect distributional effects of B and B'

Eq. Implications III: Default Incentives

► Consumption differences in repayment v. default states:


$$\Delta c \equiv c^{d=0} - c^{d=1} = \tilde{b} - q(B', g)\tilde{b}' + \phi(g)$$

- ightharpoonup The two first terms in RHS reflect distributional effects of B and B'
- Larger mass with $\tilde{b}<0$ and low q (high default risk), imply more agents with $\Delta c<0$ and higher default incentives
- Larger mass with $\tilde{b}' < 0$ reduces fraction of agents with $\Delta c < 0$: "static" default incentives decrease as fraction of future net borrowers increases

Introduction

Two Simple Examples

1. Distributional Incentives details fig

- Gov. always default as second best policy to attain efficient consumption dispersion unless rich weight more in the SWF than their actual share of wealth
- Extended to two period model with uncertainty and optimal choice of debt/default (D'Erasmo and Mendoza (2015))

2. Social Value of Debt details

- What is the welfare cost of "surprise" default in an economy with full commitment
- ▶ Welfare costs: 1.35% for B/Y up to 5%
- ightharpoonup Social value of debt and agents in favor in repayment decrease monotonically with B/Y

Calibration - Spain

Parameter		Value	Target
Risk-Free Rate (%)	\bar{r}	2.07	Real return german bonds
Risk Aversion	σ	1.00	Standard value
Autocorrel. Income	ρ_y	0.85	Guvenen (2009)
Std Dev Error	σ_u	0.25	Spain wage data
Avg. Income	μ_y	0.75	GDP net of fixed capital investment
Autocorrel. G	ρ_g	0.88	Autocorrel. government consumption
Std Dev Error	σ_e	0.02	Std. Dev. government consumption
Avg. Gov. Consumption	μ_g	0.18	Avg. G/Y Spain
Proportional Income Tax	$ au^y$	0.35	Marginal labor income tax
Discount Factor	β	0.885	Avg. ratio domestic debt Spain
Welfare Weights	ω	0.051	Avg spread Spain (vs Germany)
Default Cost	ϕ_1	0.603	Avg. Debt to GDP Spain (maturity adjusted)

▶ Default Cost and Maturity Adjustment

Moments (%)	Model	Data
Avg. Ratio Domestic Debt	74.31	74.43
Avg. Spread Spain	0.94	0.94
Avg. Debt to GDP Spain (maturity adjusted)	5.88	5.56

Time-Series Dynamics: Long Run and Pre-Crisis

TABLE: Long-run and Pre-Crisis Moments: Data v. Model

		Data	Model		
Moment (%)	Avg.	Peak Crisis	Average	Prior Default	
Gov. Debt B	5.43*	7.43	5.88	7.95	
Domestic Debt B^d	4.04	4.85	4.29	4.84	
Foreign Debt \widehat{B}	1.39	2.58	1.59	3.11	
Ratio B^d/B	74.34*	65.28	74.31	60.94	
Tax Revenues $\tau^y Y$	25.24	24.85	26.60	26.60	
Gov. Expenditure g	18.12*	20.50	18.13	18.18	
Transfers $ au$	7.04	7.06	8.35	8.73	
Spread	0.94*	4.35	0.94	7.22	

Note: * identifies moments used as calibration targets.

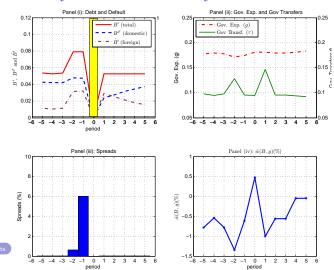
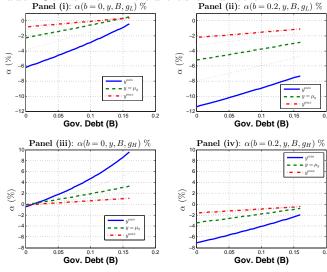
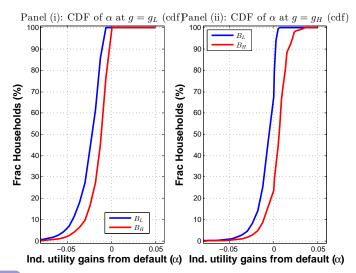

Time-Series Dynamics: Cyclical Properties

TABLE: Cyclical Moments: Data v. Model


	Standard Deviation		Correl(x, hhdi)		Correl(x, g/GDP)	
Variable x	Data	Model	Data	Model	Data	Model
Consumption	0.85	0.84	0.43	0.97	-0.32	-0.76
Trade Balance/GDP	0.63	0.55	-0.31	-0.82	0.15	80.0
Spreads	1.04	2.46	-0.44	-0.004	-0.22	-0.23
Gov. Debt / GDP	1.58	1.23	-0.18	-0.07	0.06	-0.07
Dom. Debt / GDP	1.68	0.32	-0.32	-0.34	-0.10	-0.22

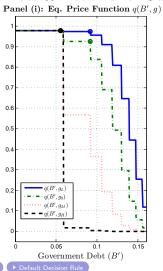
Note: hhdi denotes household disposable income. In the model, $hhdi=Y+\tau+\tau^yY$ and TB=Y-C-g.

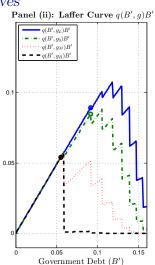
Time-Series Dynamics: Event Analysis



Agg. Welfare Gains 7

Social Distribution of α (for different B and g)





Introduction

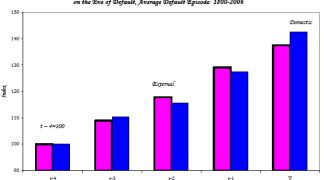
Bond Prices & Debt Laffer Curves

Conclusions

- Tradeoff between distributional incentives to default and social value of debt for self-insurance, liquidity provision and risk-sharing supports RME with debt exposed to default risk
- A rich feedback mechanism links debt issuance and default choices, government bond prices, the agent's optimal plans and the dynamics of the distribution of bonds across agents
- ▶ Results largely consistent with the data: ▶ sensitivity
 - Rapidly rising spreads at high debt ratios in periods leading to a default (rising dist. incentives, falling social value)
 - Long-run and pre-default averages are consistent with data counterparts, at low default frequency and with spreads of up to 700 basis points
 - Model also consistent with key cyclical moments observed in the data (e.g. correlation of g/GDP and spreads)

Markov Competitive Equil.

Introduction


Environment

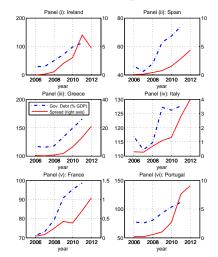
Examples

Results

The Forgotten History of Domestic Defaults

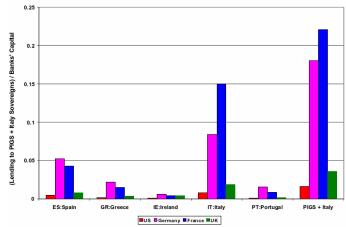
Figure 5. The Runup in Domestic and External Debt on the Eve of Default, Average Default Episode: 1800-2006

Sources: See Data Appendices I and II in Reinhart and Rogoff (2008).


Euro Area Fiscal and Debt Situation 2011

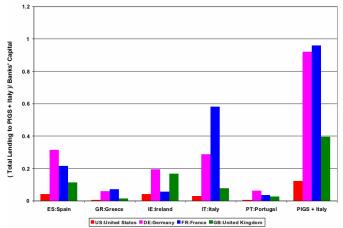
Moment		Gov. Debt Held	Gov.	Gov.	Primary	Sov.
in (%)	Gov. Debt	by Residents	Exp.	Rev.	Balance	Spreads
France	62.73	43.34	24.48	50.60	-2.51	0.71
Germany	51.49	45.04	19.27	44.50	1.69	0.00
Greece	133.10	26.73	17.38	42.40	-2.43	13.14
Ireland	64.97	14.43	18.38	34.90	-9.85	6.99
Italy	100.22	61.72	20.42	46.20	1.22	2.81
Portugal	75.84	33.64	20.05	45.00	-0.29	7.63
Spain	45.60	64.19	20.95	35.70	-7.04	2.83
Avg.	76.28	41.30	20.13	42.76	-2.74	4.87
Median	64.97	43.34	20.05	44.50	-2.43	2.83
GDP (w. avg)	66.49	49.18	21.02	44.99	-1.06	1.80

Introduction



Euro Area Evolution Debt and Spreads

Peture


Banks' Exposure to Sov. Risk (2011.q2)

Banks' Exposure to Agg. Credit Risk (2011.q2)

Definitions

- ▶ Reinhart and Rogoff (2008):
 - ▶ Domestic Public debt is issued under home legal jurisdiction.
 - In most countries, is has been denominated in local currency and held mainly by residents.
- Kumhof and Tamer (2005):
 - BIS aggregates comprehensive data on individual securities from market sources. The definition is very conservative.
 - Classifies as domestic security: issues by residents, target at resident investors in domestic currency.

Related Literature

- 1. Incomplete Markets Role of Debt:
 - Het. Agents: Aiyagari & McGrattan (98); Azzimonti, de Francisco and Quadrini (14); Heathcote (05); Floden (01); Bhandari, Evans Golosov and Sargent (16);
 - ▶ Rep. Agent: Aiyagari et al. (02); Presno and Pouzo (14);
- External Default: Arellano (08); Aguiar and Gopinath (06); Cuadra, Sanchez & Sapriza (08); Dias, Richmond & Wright (12); Sosa Padilla (14); Du and Schreger (16)
- 3. Interaction with Domestic Agentes: Guembel & Sussman (09); Broner, Martin & Ventura (10); Gennaioli, Martin & Rossi (14); Aguiar and Amador (14); Mengus (14)
- 4. Het. Agents Default: Dovis, Golosov and Shourideh (16); Aguiar, Amador, Farhi and Gopinath (15)

Recursive Individual Agent's Problem

ightharpoonup Beginning-of-period value, before d is chosen:

$$V(b,y,B,g) = (1-d(B,g))V^{d=0}(b,y,B,g) + d(B,g)V^{d=1}(y,g)$$

Introduction

Recursive Individual Agent's Problem

▶ Beginning-of-period value, before *d* is chosen:

$$V(b,y,B,g) = (1-d(B,g))V^{d=0}(b,y,B,g) + d(B,g)V^{d=1}(y,g)$$

▶ If d = 0, the agent's payoff is:

$$V^{d=0}(b, y, B, g) = \max_{\{c \ge 0, b' \ge 0\}} u(c) + \beta E_{y', g'|y, g}[V(b', y', B', g')]$$

s.t.
$$c + q(B'(B,g),g)b' = b + y(1-\tau^y) + \tau^{d=0}(B'(B,g),B,g)$$

Recursive Individual Agent's Problem

 \blacktriangleright Beginning-of-period value, before d is chosen:

$$V(b,y,B,g) = (1-d(B,g))V^{d=0}(b,y,B,g) + d(B,g)V^{d=1}(y,g)$$

▶ If d = 0, the agent's payoff is:

$$V^{d=0}(b,y,B,g) = \max_{\{c \geq 0, b' \geq 0\}} u(c) + \beta E_{y',g'|y,g}[V(b',y',B',g')]$$

s.t.
$$c + q(B'(B,g),g)b' = b + y(1-\tau^y) + \tau^{d=0}(B'(B,g),B,g)$$

▶ If d = 1, the agents's payoff is:

$$V^{d=1}(y,g) = u(y(1-\tau^y) - g + \tau^y Y - \phi(g)) + \beta E_{y',g'|y,g} \Big[V^{d=0}(0,y',0,g') \Big]$$

Recursive Problem of International Investors

▶ Arbitrage condition for bond prices:

$$q(B',g) = \frac{(1-p(B',g))}{(1+\bar{r})},$$

where p(B',g) is the default probability given by

$$p(B',g) = \sum_{g'} d(B',g')F(g',g).$$

▶ If supply of debt is short of domestic demand, agents buy bonds abroad at risk-free price

Definition (RME): Aggregates

► Aggregate Consumption is

$$C = \int_{\mathcal{Y} \times \mathcal{B}} c \ d\Gamma(b, y),$$

► Aggregate income is

$$Y = \int_{\mathcal{Y} \times \mathcal{B}} y \ d\Gamma(b, y),$$

▶ The domestic asset demand is

$$B^{d'} = \int_{\mathcal{Y} \times \mathcal{B}} b' \ d\Gamma(b, y)).$$

▶ The aggregate resource constraint in the no default periods is

$$C + g = Y + \hat{B} - q(B', g)\hat{B}',$$

and in the default period is

$$C + q = Y - \phi(q)$$
.

Simple Example I: Distributional Incentives

- ▶ One-period economy where gov. has issued B.
- \triangleright Same y for all agents, default can cost a fraction ϕ of y
- Exogenous wealth distribution :
 - Fraction γ holds $b^L = B \epsilon$
 - Fraction $(1-\gamma)$ holds $b^H = \frac{B-\gamma b^L}{1-\gamma} = B + \frac{\gamma}{1-\gamma}\epsilon$
 - $\epsilon \in [0, B]$ is exogenous demand for gov. bonds
- ▶ Government solves: $\max_{d \in \{0,1\}} \{W^{d=0}(B,g), W^{d=1}(g)\}$,

$$W^{d=0}(B,g) = \omega u(y - g + b^L - B) + (1 - \omega)u(y - g + b^H - B)$$
$$W^{d=1}(g) = u(y(1 - \phi) - g)$$

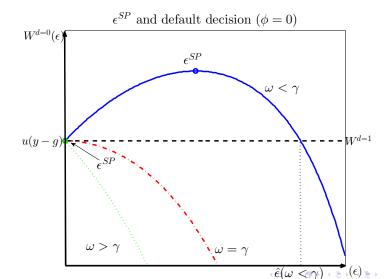
Introduction

Distributional Incentives to Default

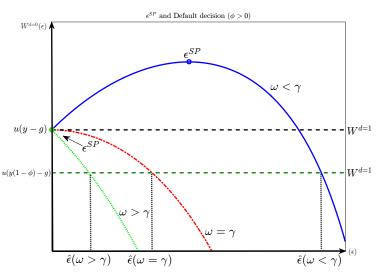
▶ Efficient consumption dispersion chosen by planner satisfies:

$$\frac{u'\left(y-g+\frac{\gamma}{1-\gamma}\epsilon^{SP}\right)}{u'\left(y-g-\epsilon^{SP}\right)} = \left(\frac{\omega}{\gamma}\right)\left(\frac{1-\gamma}{1-\omega}\right).$$

- $\blacksquare \text{ If } \phi = 0:$
 - $\omega \geq \gamma \Rightarrow$ default is always optimal for any $\epsilon > 0$
 - $\omega < \gamma \Rightarrow \exists \ \widehat{\epsilon} > 0 : \text{if} \ \epsilon < \widehat{\epsilon} \ \text{repayment is optimal}$
- - ▶ For any $\{\omega, \gamma\} \Rightarrow \exists \ \widehat{\epsilon} > 0 : \text{if } \epsilon < \widehat{\epsilon} \text{ repayment is optimal}$
 - ▶ Repayment range widens as $\gamma \omega$ or ϕ increase (i.e. tolerance for dispersion is akin to default costs)



Introduction



Introduction

Distributional Mechanism (given B) Preturn

Distributional Mechanism (given B) return fig $\phi = 0$

- ► Compare an economy with government committed to repay with one experiencing a once-and-for-all unanticipated default
- ▶ In both cases $\bar{q} = 1/(1+\bar{r})$ (gov. committed/default is a surprise)
- Compensating variation in consumption for each agent:

$$\alpha(b, y, B, g) = \left[\frac{V^{d=1}(y, g)}{V^{c}(b, y, B, g)}\right]^{\frac{1}{1-\sigma}} - 1$$

Social value of public debt:

$$\bar{\alpha}(B,g) = \int \alpha(b,y,B,g) d\omega(b,y)$$

Introduction

Social Value of Debt (cont.) Preturn

B/GDP	B^d/GDP	τ/GDP	$\bar{\alpha}(B,\mu_g)$	$\bar{\alpha}(B,\underline{g})$	$\bar{\alpha}(B, \overline{g})$	hh's $\alpha > 0$
5.0	4.5	32.4	-1.35	-2.49	-0.94	12.4
10.0	4.5	30.8	-0.66	-1.82	-0.23	49.3
15.0	4.5	29.0	0.05	-1.14	0.51	79.5
20.0	4.5	26.6	0.77	-0.44	1.26	94.2

Note: All moments are in percentage.

lacktriangle Social value of debt (i.e. cost of a surprise default) is large and monotonically decreasing in B/GDP

Social Value of Debt (cont.) Preturn

B/GDP	B^d/GDP	τ/GDP	$\bar{\alpha}(B,\mu_g)$	$\bar{\alpha}(B,\underline{g})$	$\bar{\alpha}(B, \overline{g})$	hh's $\alpha > 0$
5.0	4.5	32.4	-1.35	-2.49	-0.94	12.4
10.0	4.5	30.8	-0.66	-1.82	-0.23	49.3
15.0	4.5	29.0	0.05	-1.14	0.51	79.5
20.0	4.5	26.6	0.77	-0.44	1.26	94.2

Note: All moments are in percentage.

- \blacktriangleright Social value of debt (i.e. cost of a surprise default) is large and monotonically decreasing in B/GDP
- ► Estimates are significantly larger than those in Aiyagari & McGrattan (98) (which find a max. value of 0.1 percent)

Social Value of Debt (cont.) Preturn

B/GDP	B^d/GDP	τ/GDP	$\bar{\alpha}(B,\mu_g)$	$\bar{\alpha}(B,\underline{g})$	$\bar{\alpha}(B, \overline{g})$	hh's $\alpha > 0$
5.0	4.5	32.4	-1.35	-2.49	-0.94	12.4
10.0	4.5	30.8	-0.66	-1.82	-0.23	49.3
15.0	4.5	29.0	0.05	-1.14	0.51	79.5
20.0	4.5	26.6	0.77	-0.44	1.26	94.2

Note: All moments are in percentage.

- \blacktriangleright Social value of debt (i.e. cost of a surprise default) is large and monotonically decreasing in B/GDP
- ► Estimates are significantly larger than those in Aiyagari & McGrattan (98) (which find a max. value of 0.1 percent)
- Higher debt ratios reduce transfers and the extent to which the government can redistribute

Default Cost and Maturity Adjustment

Default Cost Function:

$$\phi(g) = \phi_1 \max\{0, (\mu_g - g)^{1/2}\}.$$

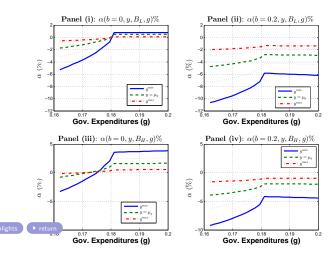
- Maturity Adjustment:
 - ightharpoonup Bonds issued in year t promise to pay one unit in year t+1 and $(1-\delta)^{s-1}$ units in year t+s for s>1
 - ▶ Duration can be written as: $D = \frac{1+r^*}{r^*+\delta}$
 - lacktriangleright If we let \overline{B} denote the value of total outstanding debt and Brepresents the maturity adjusted (one period) stock of debt, B can be written as

$$B = \frac{\overline{B}}{D}$$

Introduction

Time Series Dynamics: Event Analysis

- ▶ Debt accelerates just before default with foreign and domestic holdings rising but the former rising faster
- ▶ A lower value of g weakens the incentives to default and allows the government to increase B and τ (resulting in a reduction in $\bar{\alpha}$)
- ightharpoonup Higher debt results in higher spreads that spike when g rises
- ▶ The increase in g strengthen default incentives resulting in a sharp increase in $\bar{\alpha}$ causing a "sudden" default
- ► The sudden default and the surge in spreads (both occurring with unchanged debt) may look as if equilibrium multiplicity is the culprit but this is not the case

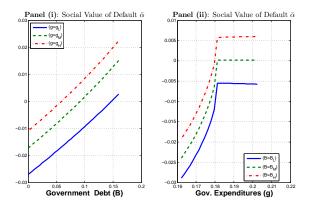

Gains of default across (B, y)

- ► Gains from default differ sharply for the non-debt holders (low b) and debt holders (high b)
 - Non-debt holders receive the same lump-sum transfers and pay same taxes that debt-holders but do not suffer wealth losses from a default
- ▶ Gains are non-monotonic in income
 - Low wealth high income agents value repayment because they would like to start building a buffer
 - High wealth, low income agents value repayment more because they would like to use their buffer stock
- ▶ Default gains are convex in government debt: non-debt holders value increasingly more redistribution of resources in their favor when a larger B is defaulted on

Individual Gains from Default as a Function of g

Gains of default across (g, y)

- \blacktriangleright Individual default gains are increasing and convex in g for $g<\mu_g$
 - Default risk increases with g
 - ightharpoonup Exogenous default cost falls as g rises
- Response of default gains to increases in g is weaker for high—income agents



Welfare Gain of Default and Tax Differential

- ightharpoonup The social value of default rises with B with the same convex pattern identified in the individual gains of default
- lacktriangle Social gains from default rise much faster at at $g \leq \mu_g$
- Social gains yield smaller numbers than individual gains because they reflect government's aggregation

Return

Social Gain of Default

$$\overline{\alpha}(B,g) = \int_{\mathcal{B} \times \mathcal{V}} \alpha(b, y, B, g) d\omega(b, y)$$

Social Distribution of α (for different B and g)

- ▶ Welfare weights $\omega(b,y)$ are exogenous but the social distribution of gains from default across agents varies endogenously with the aggregate states (B,g).
- ▶ The non-linear, non-monotonic responses of the individual α 's to changes in B and g imply that the α 's move in different directions across (b,y) pairs when (B,g) changes.
- ▶ The social distribution of default gains shifts to the right as B rises, and a larger fraction of agents are assessed as benefiting from a default.

Bond Prices & Debt Laffer Curves

- Price function has similar shape that those observed in EG models
- ightharpoonup For debt that carries default risk, prices are lower at higher g because the probability of default is increasing in g
- For low g (and long-run B), debt is sold at the risk free price and below the maximum of the Laffer curve.
- For average or high g the government chooses B' to maximize resources.
- ▶ On the equilibrium path, we also observe B' choices that are interior and carry default risk $(g = g_9)$

Sensitivity I: Government Welfare Weights Highlights

		$\bar{\omega} = 0.051$	$\bar{\omega} = 0.0435$
Moment (%)	benchmark	z = 0.025	z = 0
Long Run Averages			
Gov. Debt B	5.88	4.22	4.56
Dom. Debt ${\cal B}^d$	4.29	3.84	4.16
Default Frequency	0.93	1.00	0.53
Spreads	0.94	1.01	0.54
Transf $ au$	8.35	8.39	8.38
Frac. Hh's $b=0$	68.74	69.15	67.41
$ar{lpha}(B,g)$	-0.341	-0.306	-0.483
Averages Prior Default			
Gov. Debt B	7.95	6.00	6.12
Dom. Debt ${\cal B}^d$	4.84	4.76	4.66
Spreads	7.22	6.84	4.56
Def. Th. $\hat{b}(\mu_y)$	0.073	0.051	0.051
%. Favor Repay $\left(1 ext{-}\omega(ilde{b}(\mu_y),\mu_y) ight)$	23.45	21.99	29.98
% Favor Repay $(1-\gamma(ilde{b}(\mu_y),\mu_y))$	3.68	4.16	4.07

Note: Benchmark model parameters are $\bar{\omega}=0.051, z=0$

$$\omega(b,y) = \sum_{y_i \le y} \pi^*(y_i) \left(1 - e^{-\frac{(b+z)}{\overline{\omega}}} \right)$$

Sensitivity II: Preferences and Income Process Highlights

		F	3	σ	Г	σ	u
Moment (%)	bench.	0.85	0.90	0.5	2	0.200	0.300
Long Run Averages							
Gov. Debt B	5.88	5.96	6.32	5.06	6.80	6.28	6.40
Dom. Debt B^d	4.29	1.16	6.24	0.02	6.82	1.22	6.39
Foreign Debt \hat{B}	1.59	4.80	0.08	5.04	-0.02	5.06	0.01
Def. Freq.	0.93	1.02	0.27	19.58	0.25	0.29	0.49
Spreads	0.94	1.027	0.266	24.340	0.249	0.296	0.490
Transf $ au$	8.35	8.35	8.35	9.20	8.34	8.34	8.34
Frac. Hh's $b=0$	68.74	91.66	63.49	98.96	22.25	93.27	61.19
$ar{lpha}(B,g)$	-0.341	-0.506	-0.305	-0.646	-0.448	-0.320	-0.323
Averages Prior Default							
Gov. Debt B	7.95	7.99	8.47	6.31	8.72	8.17	8.46
Dom. Debt B^d	4.84	1.27	8.34	0.03	8.72	1.32	8.42
Foreign Debt \hat{B}	3.11	6.72	0.13	6.28	0.00	6.85	0.04
Spreads	7.22	7.03	3.76	43.49	3.72	3.59	4.69

Note: Benchmark model parameters are $eta=0.885, \sigma=1$ and $\sigma_u=0.25$ return

Sensitivity III: Default Cost Highlights

		ϕ_1		ψ		\hat{g}	
Moment (%)	bench.	0.35	0.75	0.35	0.75	0.176	0.186
Long Run Avg							
Gov. Debt B	5.88	5.59	6.04	7.23	5.37	5.36	7.17
Dom. Debt ${\cal B}^d$	4.29	4.30	4.31	4.35	4.29	4.29	4.32
Foreign Debt \hat{B}	1.59	1.29	1.73	2.88	1.08	1.07	2.85
Def. Freq.	0.93	0.49	0.95	2.89	0.13	0.14	1.68
Spreads	0.94	0.494	0.955	2.976	0.135	0.137	1.706
Transf $ au$	8.34	8.36	8.35	8.33	8.36	8.36	8.35
Frac. Hh's $b=0$	68.74	68.78	68.71	65.51	68.87	68.79	69.05
$ar{lpha}(B,g)$	-0.341	-0.230	-0.449	-0.668	-0.136	-0.174	-0.520
Avg Prior Default							
Gov. Debt B	7.95	6.92	8.48	11.76	5.96	7.67	8.06
Dom. Debt ${\cal B}^d$	4.84	4.66	4.90	5.48	4.42	4.82	4.66
Foreign Debt \hat{B}	3.11	2.26	3.57	6.28	1.54	2.85	3.40
Spreads	7.22	4.64	7.19	15.42	1.59	5.87	6.12

Note: Benchmark model parameters are $\phi_1=0.572$, $\hat{g}=\mu_g=0.182$ and $\psi=1/2$.

$$\phi(g) = \phi_1 \max\{0, (\hat{g} - g)^{\psi}\}\$$

Sensitivity IV: Proportional Income Taxes

		$ au^y$	
Moment (%)	benchmark	0.20	0.45
Long Run Averages			
Gov. Debt B	5.88	6.40	6.34
Dom. Debt B^d	4.29	6.42	2.36
Foreign Debt \hat{B}	1.59	-0.02	3.98
Def. Freq.	0.93	0.49	0.52
Spreads	0.94	0.49	0.52
Transf $ au$	8.35	8.34	8.34
Frac. Hh's $b=0$	68.74	59.81	85.87
$ar{lpha}(B,g)$	-0.3408	-0.3480	-0.3041
Averages Prior Default			
Gov. Debt B	7.95	8.45	8.06
Dom. Debt B^d	4.84	8.43	2.60
Foreign Debt \hat{B}	3.11	0.01	5.47
Spreads	7.22	4.71	4.56

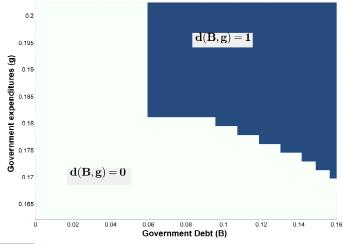
Note: Benchmark model parameters are $\tau^y = 0.35$.

Sensitivity I: Government Welfare Weights

- ▶ Increasing z for given $\bar{\omega}$:
 - Weights of agents at b = 0 increases considerably (0 vs 38.62 percent)
 - The default threshold and the fraction that benefit from repayment drop
 - These changes reflect stronger incentives to default and less desire to issue debt
- ▶ Decreasing $\bar{\omega}$ for given z:
 - Stronger incentives to default put an additional constraint on government borrowing
 - Incentives to use debt for redistribution decrease: lower average debt and spreads

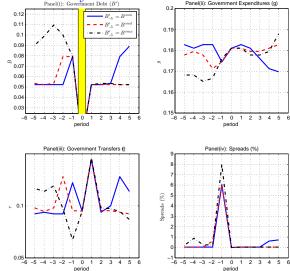
Sensitivity II: Preferences and Income Process

- ▶ Observed changes in B^d are standard: increasing incentives for self-insurance by rising β , σ or σ_u increases domestic holdings
- ▶ Higher β , σ or σ_u also allows the government to issue higher levels of debt: default incentives decrease (lower spreads)
- ► The benefit of defaulting as a mechanism for redistribution that cannot happen via self-insurance decreases
- ▶ The scenario with lower β results in higher debt levels and spreads: similar mechanism to external debt literature

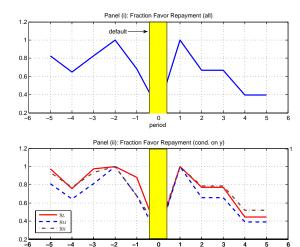


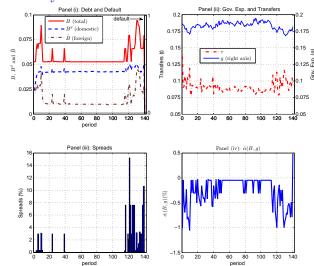
Sensitivity III: Income Taxes and Default Cost

- ▶ As the cost of default increases (higher ϕ_1 , lower ψ or higher \hat{g}) the government is able to borrow more
- ► Everything else equal the default probability decreases; however, the higher level of debt results in higher spreads
- Higher spreads induce a higher domestic demand for government bonds
- ► The average welfare cost of default increases

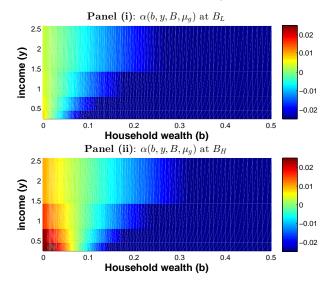


Default Decision



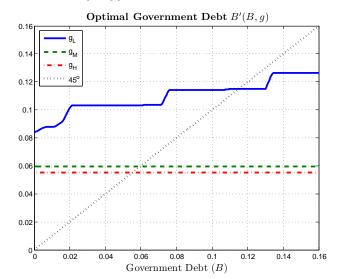


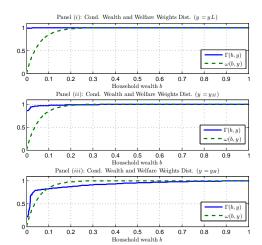
Preferences over Repayment



period

Time-Series Dynamics between Default Events


$\alpha(b, y, B, g)$ (for different B at $g = \mu_g$)


Introduction

Optimal Debt B'(B, g)

Introduction

"Average" Wealth Distribution $\bar{\Gamma}(b,y)$ and Welfare Weights $\omega(b,y)$

