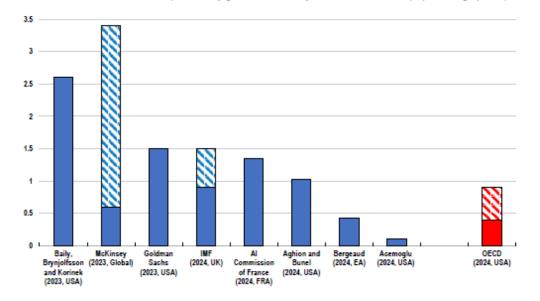
Al and Productivity: A General Purpose Technology Approach or Do androids recognise eclectic sheep?


Jonathan Haskel, Imperial College Business School

ECB, Conference on The Transformative Power of AI: Economic Implications and Challenges

April 3rd 2025, Frankfurt

Joint work as part of <u>EUKLEMS-INTANProd</u> project with Filippo Bontadini, Carol Corrado, Cecilia Jona-Lasinio

Wide estimates of the effect of AI on labour productivity and TFPG....

Predicted increase in annual labour productivity growth over a 10-year horizon due to AI (in percentage points)

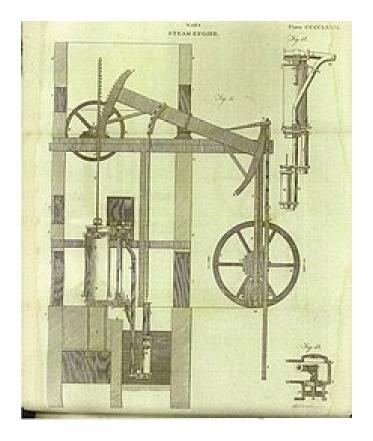
- Gains to TFP
 - Acemoglu = 0.064pppa
 - Gal et al = 0.14-0.38pppa
- Source: Gal et al, Table 2, Acemoglu, p.41.

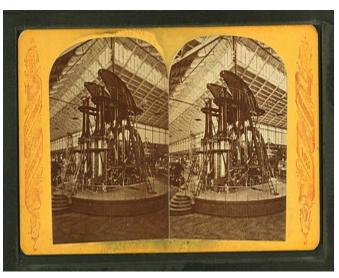
Notes: effect on TFP and implied capital deepening Source: Gal et al, Figure A10.

Where do these estimates come from? The "task-based" approach

- Assumption: AI will reduce costs of labour on certain tasks "labour saving technical change"
- Implied cost reduction is then

$$d(tfp)' = \frac{P_L L}{P_V V} \left[\sum_{s \in T} \frac{P_{L_s} L_s^T}{P_L L} \oint_{\substack{Y \in T \\ \text{tasks exposed} \\ \text{to AI}}} \oint_{\substack{Y \in T \\ \text{tasks profitably} \\ \text{over } Y \text{ years}}} \frac{d\theta_s^{T,AI}}{\int_{\text{cost saving}}} \frac{1}{Y} \\ \stackrel{Y}{\underset{\text{convert to saving} \\ \text{per annum}}} \right]$$


$$0.06\% pa \left[0.5 \qquad 0.2 \qquad 0.23 \qquad 0.23 \qquad 0.27 \qquad 1/10 \right]$$


What if AI is a GPT?

- Definition:
- "characterized by the potential for pervasive use in a wide range of sectors and by their technological dynamism. As a GPT evolves and advances it spreads throughout the economy, bringing about and fostering generalized productivity gains." (Bresnahan, Trajtenberg, 1995)
- GPT in agriculture: Hybrid corn (Griliches, 1957)
 - Not a type of corn
 - A method of breeding corn suited to the local environment
 - "...the invention of a method of inventing"
- General examples: steam, electricity, semi-conductor
- Note: Acemoglu p.17 "I also do *not* discuss how AI can have revolut effects by changing the process of science" [our emphasis]

Steam: the Al of its time...

Corliss steam Engine, 1849: 30% less fuel, 30% more power

Albion Mills (steam-powered flour mill), London 1786

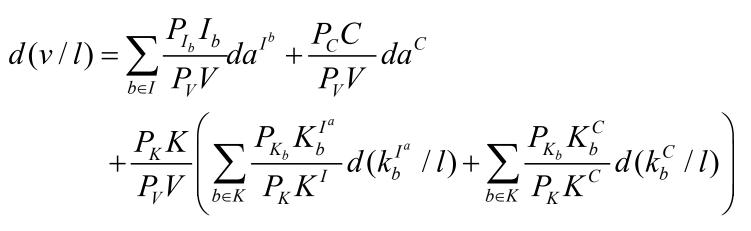
Stephenson's Rocket, 1829

Watt Steam Engine, 1797

GPT and productivity growth: steam

Tangibles, type b

$$di^{b} = \sum \frac{P_{L}L}{P_{I}I^{b}} dl^{I^{b}} + \sum_{b \in K} \frac{P_{K_{b}}K_{b}^{I^{b}}}{P_{I}I^{b}} dk_{b}^{I^{b}} + da^{I^{b}}$$


• **Production**: steam engine producing sector

Consumption

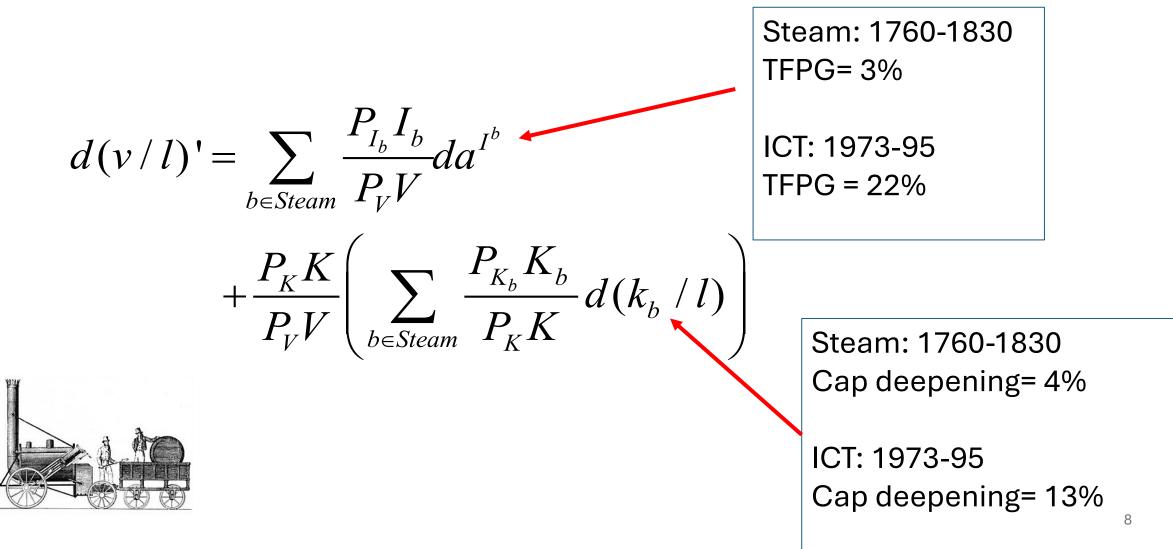
$$dc = \sum_{s \in L} \frac{P_L L}{P_C C} dl^C + \sum_{b \in K} \frac{P_{K_b} K_b}{P_C C} dk_b^C + da^C$$

• Use: railways, coal mines

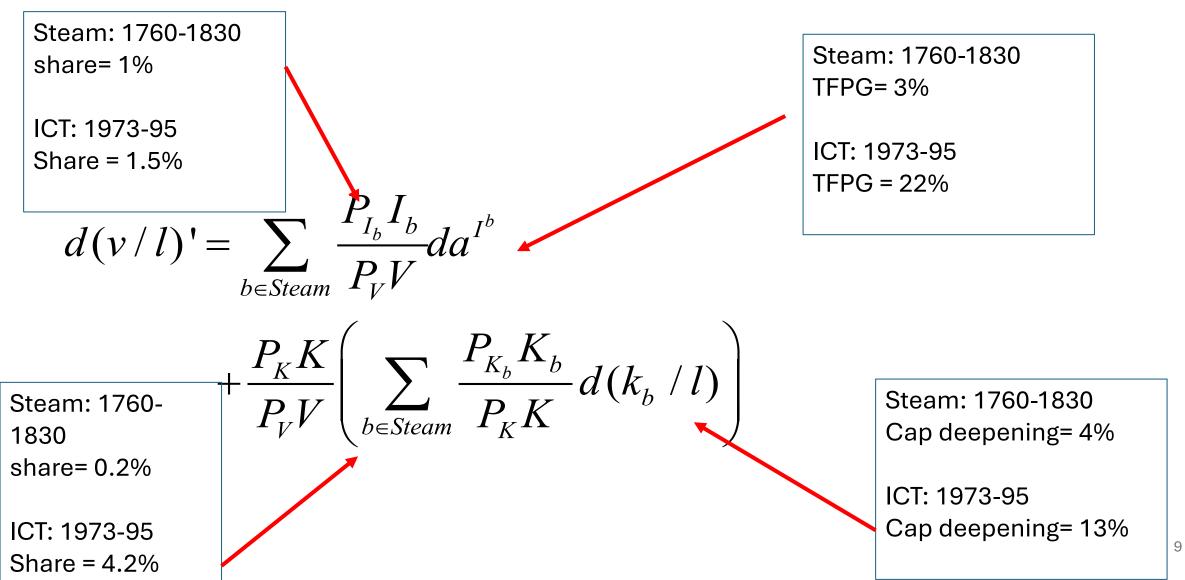
Labour productivity growth

$$d(v/l)' = \sum_{b \in Steam} \frac{P_{I_b}I_b}{P_V V} da^{I^b}$$

$$+\frac{P_{K}K}{P_{V}V}\left(\sum_{b\in Steam}\frac{P_{K_{b}}K_{b}}{P_{K}K}d(k_{b}/l)\right)$$

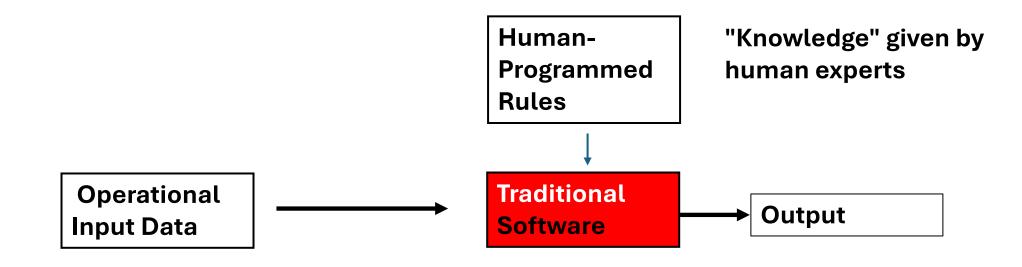

Total d(v/l)

- TFP in production
- +
- Capital deepening


Steam impact

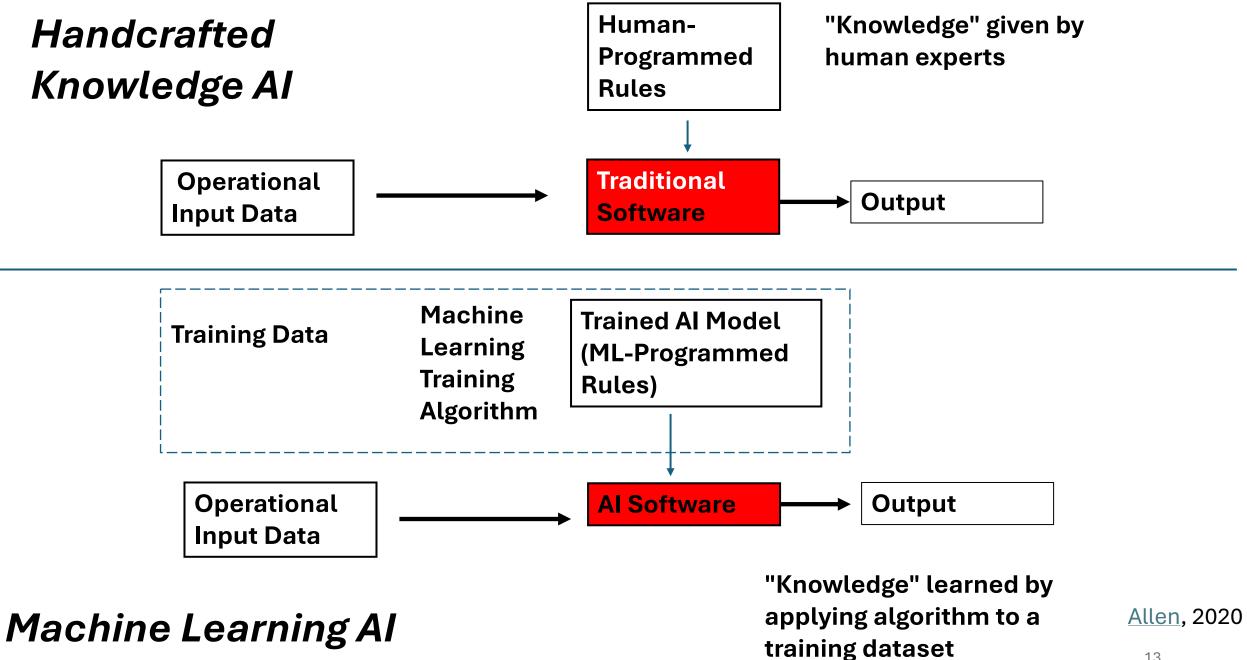
- TFP in steam production * size of steam production
- +
- Steam-capital deepening *share of steam capital payments

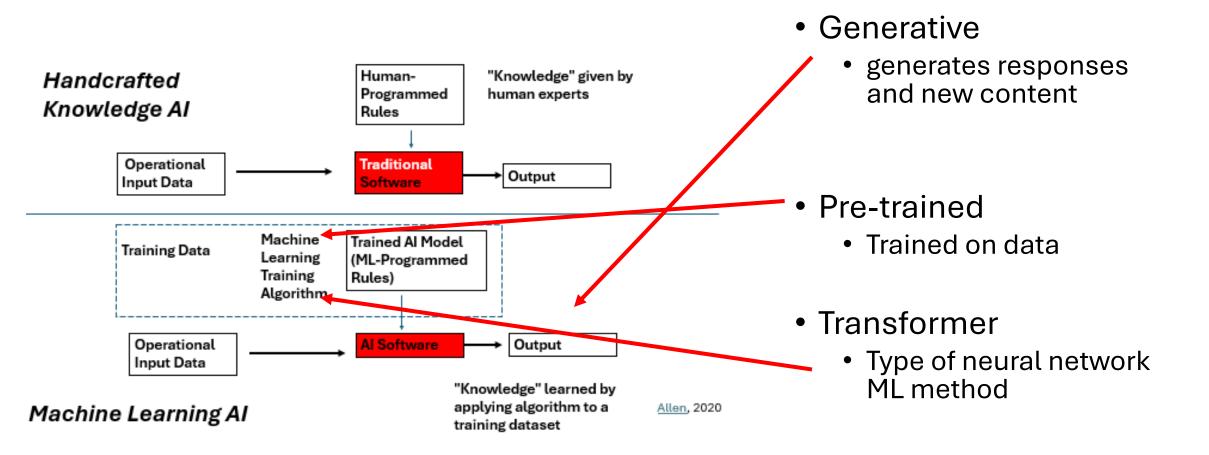
Why is the impact of GPTs so small when they are so productive?


Why is the impact of GPTs so small when they are so productive? [Steam = 0.02%, ICT = 0.67%]

What is AI?

- Al first generation "Handcrafted Knowledge AI" (Allen, 2020)
- Chess Deep Blue (1997 victory)
- Software was
 - Rules of chess moves
 - Strategy advice from chess masters



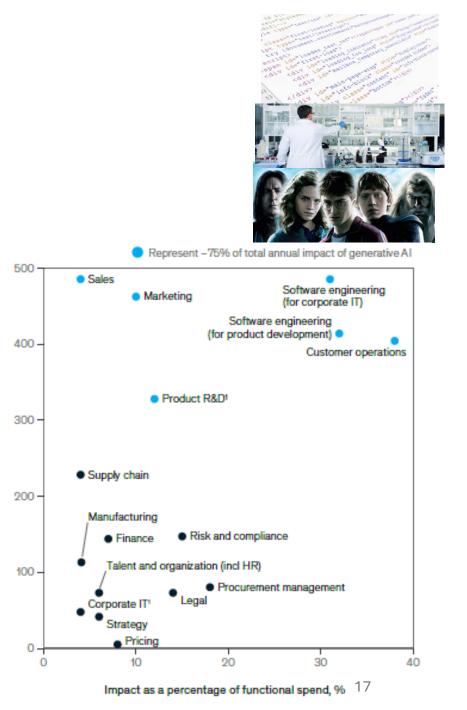

Machine Learning AI: Do androids recognise eclectic sheep?

- Facial recognition: too hard for
 - Humans
 - For handmade software
- How does ML AI do it?
 - Use pictures (= unstructured data)
 - ML: Train software on subset of pictures (shapes, distances between features etc.)
 - Used trained software to recognise all pictures

Digression: what is ChatGPT?

Where is software in GDP?

- Investment types
- Tangible:
 - Buildings
 - Vehicles
 - Computer
 - Non-computer plant and machinery
- Intangible
 - Software and databases
 - R&D
 - Artistic originals



What do these task exposures measure?

- <u>Eloundou</u>, et al, 2024, Supplementary material, Table 3.1.1.
- Direct exposure (E1) if:
 - using LLM ...can decrease the time required to complete the [activity] or task by at least 50% [our italics]
- LLM+ Exposed (E2) if:
 - additional software could be developed on top of the LLM that could reduce the time it takes... (including) image generation systems [our italics]
- E2 seems like the equivalent of steam capital deepening
- = Software capital deepening

How do we interpret AI?

- Narrow: just software
 - Production: TFPG in software writing
 - Use: Software capital deepening
- But maybe Al is Broader...
 - Al uses data, so TFPG and deepening in data
 - AI helps with R&D and creativity
 - McKinsey: AI affects many intangible business functions

Impact, \$ billion

GPT analysis with intangibles

Intang, type a

$$dn^{a} = \sum \frac{P_{L}L^{N^{a}}}{P_{N}N^{a}} dl^{N^{a}} + \sum_{b \in K} \frac{P_{K_{b}}K_{b}^{N^{a}}}{P_{N}N^{a}} dk_{b}^{N^{a}} + da^{N^{a}}$$

Tan, type b

$$di^{b} = \sum \frac{P_{L}L^{I^{b}}}{P_{I}I^{b}} dl^{I^{b}} + \sum_{b \in K} \frac{P_{K_{b}}K_{b}^{I^{b}}}{P_{I}N^{b}} dk_{b}^{I^{b}} + da^{I^{b}}$$

Consumption

$$dc = \sum \frac{P_{L}L^{C}}{P_{C}C} dl^{C} + \sum_{b \in K} \frac{P_{K_{b}}K_{b}^{C}}{P_{C}C} dk_{b}^{C} + \sum_{a \in N} \frac{P_{R_{a}}R_{a}^{C}}{P_{C}C} dr_{a}^{C} + da^{C}$$

 Production of intangible capital

• Production of tangible capital

 Use of tangible and intangible

Al contribution to labour productivity growth, Al=software/data and robots

$$d(v/l)' = \sum_{a \in AI, SOFT/DATA} \frac{P_{N_a} N_a}{P_V V} da^{N^a} + \sum_{b \in AI, ROBOTS} \frac{P_{I_b} I_b}{P_V V} da^{I^b}$$
$$+ \frac{P_K K}{P_V V} \left(\sum_{b \in AI, ROBOTS} \frac{P_{K_b} K_b}{P_K K} d(k_b/l) \right)$$
$$+ \frac{P_R R}{P_V V} \left(\sum_{a \in AI, SOFT/DATA} \frac{P_{R_a} R_a^C}{P_R R} d(r_a^C/l) \right)$$

- TFPG in Al software/data and robots
- Al robot capital deepening

 AI software/data capital deepening

Al contribution to lab prod growth, Al=software/data, or broader

$$d(v/l)' = \sum_{a \in AI, SOFT/DATA} \frac{P_{N_a}N_a}{P_V V} da^{N^a}$$

$$+\frac{P_{R}R}{P_{V}V}\left(\sum_{a\in AI,SOFT/DATA}\frac{P_{R_{a}}R_{a}^{C}}{P_{R}R}d(r_{a}^{C}/l)\right)$$

- **Production:** TFPG in Al software/data
- (Broader: TFPG in intangible business functions)

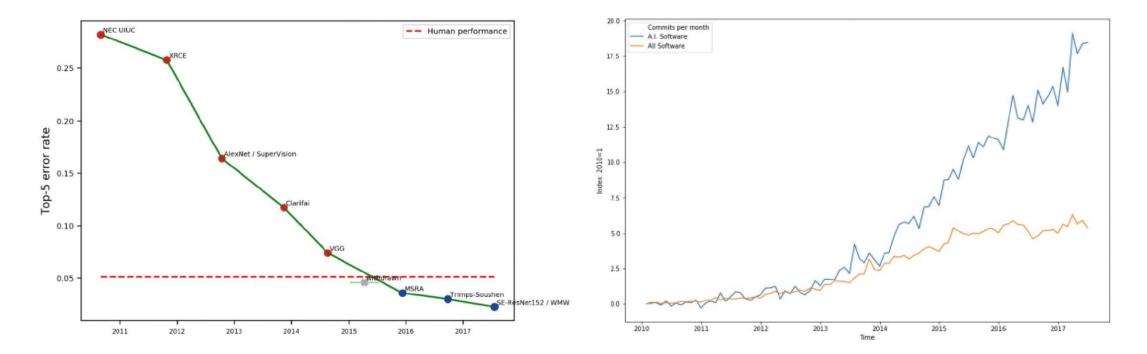
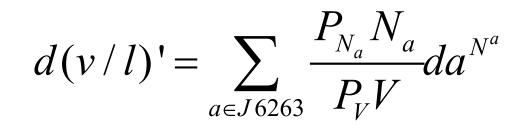

- **Use:** AI software/data capital deepening
- (Broader: capital deepening in intangible assets)

Illustration: software, pre-2015 and 2015-19

Big data era, but before Gen AI (2022+)


Image recognition

Al use in Open Source software

Source: Corrado, Haskel, Jona-Lasinio, OxRep 2021

J62-63, IT & other info services

+

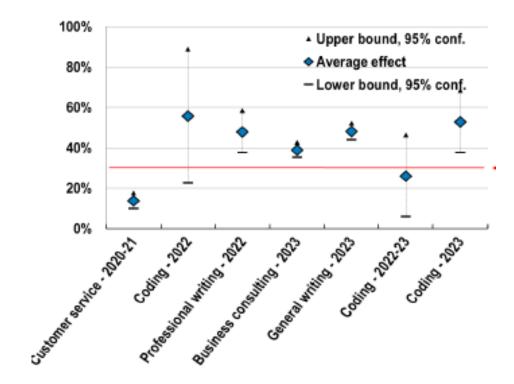
2010-14:

TFPG= 2.7%, Share =0.04, Contrib = 0.11

2015-19: TFPG= 3.2%, Share =0.05, **Contrib = 0.15**

 $\frac{P_R R}{P_V V} \left(\sum_{a \in SOFT/DATA} \frac{P_{R_a} R_a^C}{P_R R} d(r_a^C / l) \right)$ 2010-14:

Kdeep= 5.2%, Share =0.03, Contrib = 0.17


2015-19: Kdeep= 6.7%, Share =0.04, **Contrib = 0.25**

Gains from IT/other info svcs: summary

- USA data pre/post 2015-19
 - TFP gain = 0.5%
 - K deep gain = 1.5%
 - Total gain = 0.04+0.08=0.12%pa
- Future TFP gains?
 - Micro studies; OECD average = 30% productivity gain from GenAI !
 - Not clear if TFP
 - Just the adopting firms
 - How long to take?
 - note across many business functions

Figure 3. Micro-level performance gains from AI for workers in specific tasks

Estimates of the impact of Generative AI from recent micro-level studies

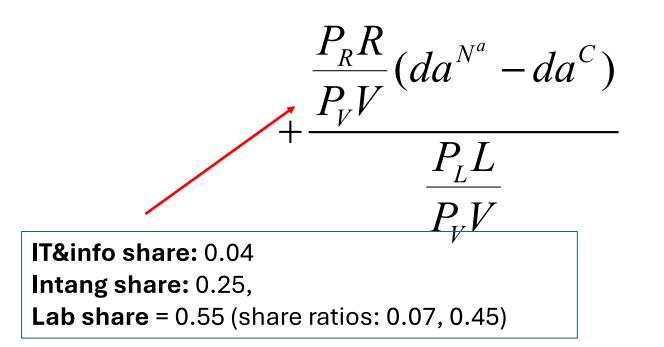
Source: Filippucci, Gal, and Schief 2024

Broader

$$d(v/l)' = \sum_{a \in AI} \frac{P_{N_a} N_a}{P_V V} da^{N^a}$$

+

2015-19: **IT&info:** TFPG= 3.2%, Share =0.05, **Contrib = 0.15 Intang:** TFPG = ?, Share = 0.14+(X-M)


 $\frac{P_R R}{P_V V} \left(\sum_{a \in AI} \frac{P_{R_a} R_a^C}{P_R R} d(r_a^C / l) \right)$

2015-19: IT&info: Kdeep= 6.7%, Share = 0.04, Contrib = 0.25Intang: Kdeep = 4.0%, Share = 0.25, Contrib= 1.01

Steady state, two sector model

$$d(v/l)' = \sum_{a \in AI} \frac{P_{N_a} N_a}{P_V V} (da^{N^a} - da^C)$$

2015-19: IT&info: 0.05 + (X-M) Intang: 0.14 + (X-M)

Low share: 2% TFP advantage = 0.1+0.14=0.24pa

High share: 5% advantage = 0.7+2.25=2.95%pa

10% share, 2% advantage = 0.56%pa

Summary

- Investigation: AI as an innovation in innovation => TFP gain in production of intangibles
- Gains from steam and ICT at start were small because asset base was small
- Expect gains to be higher because asset base is higher
 - Steam income share <0.01 for 60 years
 - Software income share = 0.04 now
 - Intangible income share = 0.25 now
- Rough estimate of Big Data gains to LPG 2015-19 = 0.12pppa
- TFPG gains
 - 2%: short run TFPG rise = 0.1-0.2pppa, long run LPG=0.3-0.6pppa
 - 5%: short run TFPG rise = 0.3-0.5pppa, long run LPG = 0.7-1.4pppa
- Provisional conservative estimate of near-term LPG gains = twice Big Data gains= 0.24ppa