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1 Introduction

The fed funds rate is the Federal Reserve’s primary tool for communicating and enacting its

monetary policy stance. The actual implementation of the desired fed funds rate target is

typically guided by a stylized demand-and-supply paradigm like the one illustrated in Figure

1. The goal of this paper is to develop a quantitative framework of the determination of the

fed funds rate that will be a better guide for monetary policy implementation.

Before the Great Financial Crisis of 2007-2008 (GFC), aggregate reserves were scarce (e.g.,

around a low level such as Q0 in the first panel of Figure 1), the fed funds market was operating

on the steep portion of the demand for reserves, and target rates like r∗0 were achieved by

changing the supply of reserves through open-market operations. This operating framework is

known as a corridor system since it can implement any target rate inside the corridor defined

by a ceiling rate (e.g., the Discount-Window rate, ιw ), and a floor rate (e.g., the interest that

the central bank pays on bank reserves, ιr).

After the onset of the GFC, the Federal Reserve undertook large-scale asset purchases that

increased banks’ reserve balances to very high levels (e.g., Q1 in the top-right panel of Figure

1). When the fed funds market is operating on the flat portion of the demand for reserves,

the central bank can no longer rely on conventional (small-scale) open-market operations to

implement the desired changes in the fed funds rate target. Target rates like r∗1 are achieved

by changing the administered rates offered by standing facilities, i.e., the Discount-Window

rate (DWR), the interest rate paid on bank reserves (IOR), and the offering rate on overnight

reverse repurchase agreements (ONRRP)—an operating framework known as a floor system.

To describe the ranges of reserves compatible with these two operating frameworks, pol-

icymakers often use “scarce reserves” to refer to the range where the slope of the aggregate

demand for reserves is “steep”, “ample reserves” for the range where it is “gentle”, and “abun-

dant reserves” for the range where it is “flat”, as illustrated in the top-right panel of Figure 1.1

The Federal Reserve intends to continue operating a floor system in which an “ample” supply

of reserves ensures that the fed funds rate is controlled by the administered rates, and in which

“active management of the supply of reserves is not required.”2

In terms of the schematic in Figure 1, a floor system seems easy to manage: the central bank

1See Afonso et al. (2020b) and Afonso et al. (2022). The term “ample” has become standard language in
FOMC press releases (see, e.g., Federal Reserve Board (2019c)).

2See, e.g., Federal Reserve Board (2019b).
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only needs to ensure the supply of reserves is “ample”, i.e., near Q1 in the top-right panel. In

practice, however, this is challenging because identifying the range of “ample” reserves requires

global estimates of the slope of the aggregate demand for reserves, but standard empirical

approaches can at best deliver local estimates. This local-global gap is a significant obstacle to

effectively running a floor system like the one the Federal Reserve has adopted.3

In this paper we develop a quantitative model of the fed funds market, calibrate it to match

a wide array of bank-level and market-level statistics—including available empirical estimates

of the local slope of the aggregate demand for reserves—and use it to bridge the local-global

gap. Specifically, we use the equilibrium relationship between the aggregate supply of reserves

and the fed funds rate, to estimate the global shape of the aggregate demand for reserves in

the United States.

The theory incorporates search and bilateral bargaining to represent the well-documented

over-the-counter microstructure of the fed funds market. The theory also accounts for relevant

institutional considerations, such as the differential regulatory treatment of the reserve balances

held by Government Sponsored Enterprises (GSEs) vis á vis depository institutions, and incor-

porates the array of policy instruments and regulations that affect participants’ demands for

reserves, such as the administered policy rates (DWR, IOR, ONRRP), the regulatory require-

ments on reserve holdings, and the aggregate quantity of reserves supplied to the system. The

theory also accommodates the large degree of heterogeneity among fed funds participants across

several dimensions, such as: market power in bilateral negotiations, frequency and size distribu-

tion of idiosyncratic payment shocks originated by forces outside the fed funds trading motives,

measures of trading activity (frequency of trade, number of counterparties, participation rate in

aggregate volume of trade), and degree of centrality in the endogenous market-making activity

that reallocates reserves across the trading network.

We calibrate the parameters of the theory that govern the heterogeneity in payment and

trading activities using high-frequency micro-level transaction data from Fedwire. We find the

model is able to fit the targeted cross-sectional observations well, e.g., as in the data, a small

3By local estimates we mean estimates based on instrumented variation around a relatively narrow range of
the supply of reserves. Often these local estimates cannot be extrapolated to infer the effects of large changes
in reserves (e.g., in the presence of structural or policy changes). The empirical identification challenges are
illustrated in the bottom panels of Figure 1, which show situations in which structural parameters are Πi at the
time the quantity-price pair (Qi, r

∗
i ) is observed, for i ∈ {0, 1}. Without theoretical guidance to identify the

structural parameters whose variation (e.g., from Π0 to Π1) shift the demand for reserves, one may be led to
believe the observations {(Qi, r

∗
i )}i∈{0,1} lie on a single demand curve, and therefore overestimate (bottom-left

panel) or underestimate (bottom-right panel) the relevant slope.
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number of very active banks account for the majority of loans, and carry out most of the inter-

mediation. The calibration strategy also ensures that the model matches empirical estimates

of the local slope of the aggregate demand for reserves at the current level of total reserves.

The calibrated model is also broadly consistent with empirical observations not targeted in the

calibration, such as the cross-sectional distribution of bilateral interest rates, the distribution of

bid-ask spreads, and the intraday flow of reserves and supporting interest rates between pairs

of banks in different positions on the trading network.

We use the quantitative theory to make two practical contributions to the operational side of

monetary policy implementation. First, we deliver global structural estimates of the aggregate

demand for reserves, which are useful to central banks that wish to operate floor systems.

Second we devise two “navigational instruments” for monetary policy implementation. The

first instrument, which we term Monetary Confidence Band (MCB), is a hybrid of theory and

data: it is a simple procedure that uses the empirical distribution of daily reserve-draining

shocks to construct a confidence band around the aggregate demand for reserves that, for each

outstanding quantity of reserves, will contain the equilibrium fed funds rate with a desired

degree of confidence, e.g., 99%. We estimate that total reserves of about 10% of GDP would

be enough to ensure the fed funds rate remains within the current target range. The second

instrument is the cross-sectional distribution of banks’ shadow cost of procuring funding in the

fed funds market implied by the theory.

This paper contributes to the large empirical and theoretical literature that studies the

fed funds market, e.g., Poole (1968), Hamilton (1996), Furfine (1999), Carpenter and Demiralp

(2006), Ashcraft and Duffie (2007), Bech and Atalay (2010), Afonso et al. (2011), Bech and Klee

(2011), Afonso and Lagos (2014, 2015a,b), Ennis and Weinberg (2013), Armenter and Lester

(2017), Afonso et al. (2019), Ennis (2019), Chiu et al. (2020), Beltran et al. (2021), Copeland

et al. (2021), and Afonso et al. (2022). Methodologically, we build on the strand of the finance

microstructure literature that uses search theory to model over-the-counter markets, e.g., Duffie

et al. (2005), Lagos and Rocheteau (2007, 2009), Weill (2007), Lagos et al. (2011), Üslü (2019),

and Hugonnier et al. (2020). Specifically, our model builds on Afonso and Lagos (2015b), which

we generalize along several dimensions to make it a serviceable quantitative tool for monetary

policy implementation.

4



2 Theory

There is a unit measure of banks that are heterogeneous along several dimensions. We represent

this heterogeneity with a finite set N of bank types, and let ni ∈ [0, 1] represent the proportion of

banks of type i ∈ N, with
∑

i∈N ni = 1. Banks hold an asset we interpret as (claims to) reserve

balances that can be traded with other banks during the time interval T = [0, T ]. The reserve

balance that a bank holds at a given time is represented by a real number, e.g., a ∈ R. The

cumulative distribution function of reserve balances across all banks at time t ∈ T is denoted

Ft (a) =
∑

i∈N niF
i
t (a), where F i

t (a) : R× T → [0, 1] is the cumulative distribution of balances

across banks of type i at time t. The initial distribution,
{
F i
0 (·)

}
i∈N, is given, and so is the

aggregate supply of reserve balances throughout the trading session, denoted Q ≡
∫
adF0 (a).

Banks trade reserves with other banks in a bilateral over-the-counter market where a bank

of type i ∈ N contacts another bank at random times generated by a Poisson process with

arrival rate βi ∈ R+. Conditional on a meeting, the counterparty is a random (uniform) draw

from the population of banks. Once two banks have made contact, they bargain over the size

of the loan and the quantity of reserve balances to be repaid by the borrower. The bargaining

outcome is determined by Nash bargaining. When a bank of type i ∈ N negotiates with a bank

of type j ∈ N, we assume the bargaining power of the former is θij = 1− θji ∈ [0, 1]. After the

transaction, the banks part ways.

We assume all loans are settled at time T̄ > T , and that banks value reserve balances

linearly at that time. Specifically, if c ∈ R is a bank’s net credit position to be settled at T̄

that has resulted from a certain history of trades, then e−r(T̄−t)c is the bank’s payoff from this

credit balance at time t ∈ [0, T ], where r ∈ R+ is the discount rate common to all banks.

Banks receive payment shocks that cause reallocations of reserve balances among pairs of

banks. Specifically, with Poisson rate λi ∈ R+, a bank of type i ∈ N is forced to make an

immediate transfer of reserves to a counterparty that is drawn randomly (uniformly) from the

population of banks. This process for the arrival of payment shocks is independent across banks

and independent of the processes that generate bilateral trading opportunities. Conditional on

the arrival of a payment shock, the quantity of reserves that the bank of type i sends the bank

of type j is modeled as a random variable with cumulative distribution function Gij : Z → [0, 1],

where Z ⊆ R is the support of Gij , and dGij (z) = dGji (−z), which captures the notion that

these payments are transfers between pairs of bank types.
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For each i ∈ N, define the function Ui : R → R, where Ui (a) represents the payoff to a bank

of type i from holding reserve balance a ∈ R at the end of the trading session. Similarly, for

each i ∈ N, define the function ui : R → R, where ui (a) represents the flow payoff to a bank

of type i from holding reserve balance a ∈ R during the trading session. The type of a bank is

defined by a collection of primitives, i.e., type i ∈ N is defined by (ni, βi, λi, {θij , Gij}j∈N , ui, Ui),

in the sense that each of the ni banks of type i has trading frequency βi, bargaining powers

{θij}j∈N, payment frequency λi, probability distributions {Gij}j∈N of payment sizes, intraday

payoff function ui, and end-of-day payoff function Ui.

2.1 Discussion

The market for federal funds is a market for unsecured loans of reserve balances at the Federal

Reserve Banks. These unsecured loans, commonly referred to as federal funds (or fed funds) are

delivered on the same day, and their maturity is typically overnight. Most fed funds transactions

and interbank payments are conducted through Fedwire Funds Services (Fedwire), a large-value

real-time gross settlement system operated by the Federal Reserve Banks. Participants in the

fed funds market are institutions that hold reserve balances in accounts at the Federal Reserve,

which include commercial banks, savings banks, thrift institutions, credit unions, agencies and

branches of foreign banks in the United States, government securities dealers, government agen-

cies such as federal or state governments, and Government Sponsored Enterprises (GSEs, e.g.,

Freddie Mac, Fannie Mae, and Federal Home Loan Banks). The fed funds market is over the

counter : in order to trade, a financial institution must first find a willing counterparty and then

bilaterally negotiate the size and rate of the loan. The fed funds market is the epicenter of mon-

etary policy implementation in the sense that the effective fed funds rate (EFFR)—the policy

rate that the Federal Reserve uses to communicate and implement monetary policy—is a daily

volume-weighted average of the bilateral interest rates negotiated by fed funds participants.

We use a search-based model with ex post bargaining to represent the bilateral over-the-

counter nature of the fed funds market. Search captures three layers of randomness in trading

activity in our model. First, the time it takes a bank of type i ∈ N to contact a counterparty is

an exponentially distributed random variable with mean 1/βi. Second, conditional on having

contacted a counterparty, the type of the counterparty is a uniform random draw. Third,

conditional on having met a counterparty of type j ∈ N at time t, the current reserve balance of

the counterparty is a random variable with cumulative distribution function {F j
t (·)}j∈N. We use
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the generalized Nash bargaining solution to represent the outcome of the bilateral negotiations

between counterparties in actual fed funds trades.

The motives for trading fed funds may vary across participants and their specific circum-

stances on any given day, but there are two main reasons in general. First, some participants

may regard fed funds as an investment vehicle—an interest-yielding asset that can be used to

deposit balances overnight. Also, some institutions such as commercial banks use the fed funds

market to offset the effects of random payment shocks (resulting from transactions initiated by

their clients or by profit centers within the institutions themselves) that would otherwise leave

them with a reserve position deemed too low relative to regulatory requirements. In the theory,

the Poisson rate λi represents the frequency of these payment shocks for a bank of type i ∈ N,
and Gij represents the size distribution of payment shocks between two banks of types i and

j. In our model, all payoff-relevant policy and regulatory considerations are captured by the

intraday and end-of-day payoff functions, {ui (·) , Ui (·)}i∈N.
Fedwire and the fed funds market operate 21.5 hours each business day, from 9:00 pm

eastern standard time (EST) on the preceding calendar day to 6:30 pm EST. Although there is

occasionally some activity between 9:00 pm and 9:00 am, the bulk of the fed funds transactions

and interbank payments take place between 9:00 am and 6:30 pm. Thus, in the theory, we

think of t = 0 as standing in for 9:00 am and use the initial condition
{
F i
0 (·)

}
i∈N to represent

the distribution of reserve balances at this time.

2.2 Equilibrium

Let J i
t (a, c) : N× T× R2 → R be the maximum attainable payoff to a bank of type i that at

time t ∈ T has reserve balance a ∈ R and net credit position c ∈ R. In Appendix B (Lemma

1) we show that J i
t (a, c) = V i

t (a) + e−r(T̄−t)c, where V i
t (a) : N× T× R → R is the maximum

expected discounted payoff a bank of type i ∈ N can obtain when holding a ∈ R reserve balances

at time t ∈ T. Whenever two banks contact each other during the trading session, they bargain

over the size of the loan and the repayment. Consider a bank of type i with reserve balance a

that contacts a bank of type j with reserve balance ã. The pair (bijt (a, ã) , Rji
t (ã, a)) denotes

the bilateral terms of trade negotiated by these banks at time t, where bijt (a, ã) is the quantity

of reserves that the bank of type i with balance a lends to the bank of type j with balance ã,

and Rji
t (ã, a) is the quantity of balances that the latter commits to repay the former at time
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T̄ . For any (a, ã, t) ∈ R2 × T, (bijt (a, ã) , Rji
t (ã, a)) is the solution to

max
(b,R)∈R̄×R

[
V i
t (a− b) + e−r(T̄−t)R− V i

t (a)
]θij [

V j
t (ã+ b)− e−r(T̄−t)R− V j

t (ã)
]θji

,

with R̄ ≡
[
−b̄, b̄

]
, where b̄ ∈ R+ ∪ {∞} represents a limit on bilateral credit exposures (there is

no borrowing limit if b̄ = ∞). The first-order conditions for this problem imply

bijt (a, ã) ∈ argmax
b∈R̄

Sij
t (a, ã, b) (1)

e−r(T̄−t)Rji
t (ã, a) = θij

[
V j
t (ã+ bijt (a, ã))− V j

t (ã)
]
+ θji

[
V i
t (a)− V i

t (a− bijt (a, ã))
]
, (2)

where

Sij
t (a, ã, b) ≡ V i

t (a− b) + V j
t (ã+ b)− V i

t (a)− V j
t (ã) .

Condition (1) characterizes the loan size, and (2) gives the repayment given the loan size. The

implied gross interest rate on this loan is

1 + ρjit (ã, a) =
Rji

t (ã, a)

bijt (a, ã)
.

In Appendix B (Lemma 2) we show that the value function V i
t (a) satisfies

rV i
t (a)− V̇ i

t (a) = ui (a) + λi

∑
j∈N

πj

∫ [
V i
t (a− z)− V i

t (a)
]
dGij (z)

+ βi
∑
j∈N

σjθij

∫
max
b∈R̄

Sij
t (a, ã, b) dF j

t (ã) , (3)

with boundary condition V i
T (a) = Ui (a), where

πj ≡
λjnj∑
i∈N λini

is the probability the counterparty in a bilateral payment is of type j, and

σj ≡
βjnj∑

k∈N βknk

is the probability the counterparty in a bilateral trade is of type j.

Let f i
t ≡ dF i

t denote the probability density function of reserve holdings among banks of

type i at time t. This density follows the law of motion

ḟ i
t (a) + (βi + λi) f

i
t (a) = λi

∑
j∈N

πj

∫ ∫
I{x−z=a}dGij (z) dF

i
t (x)

+ βi
∑
j∈N

σj

∫ ∫
I{x−bijt (x,ã)=a}dF

j
t (ã) dF

i
t (x) . (4)
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Hereafter, let U (·) = {Ui (·)}i∈N, V t (·) =
{
V i
t (·)

}
i∈N, bt (·, ·) = {bijt (·, ·)}i,j∈N, Rt (·, ·) =

{Rij
t (·, ·)}i,j∈N, and F t (·) =

{
F i
t (·)

}
i∈N.

Definition 1 An equilibrium is a time-path {bt (·, ·) ,Rt (·, ·) ,V t (·) ,F t (·)}t∈T that satisfies

(1), (2), (3), and (4), given the initial condition F 0 and the terminal condition V T = U .

3 Fed-funds trading network: evidence

In this section we document two cross-sectional measures of fed funds trading activity that we

will use as data targets to discipline the quantitative implementation of the theory.4 The joint

distribution of these statistics reveals an empirical fed-funds trading network characterized by

substantial heterogeneity of trading activity across banks. Most banks trade relatively little

and are either net buyers or net sellers, while a core of very active banks accounts for the bulk

of the trade volume and act as fed-funds intermediaries between third parties.

The first statistic is the participation rate which measures a bank’s share of the market-wide

trade volume. For a bank n on day d, it is defined as

Pnd =
υend + υrnd

2υd
,

where υend is the dollar value of loans extended by bank n on day d, υrnd is the dollar value of loans

received, and υd =
∑

m υemd is market-wide trade volume on day d. Notice that Pnd ∈ [0, 1/2],

with Pnd = 0 if bank n did not trade during day d, and Pnd = 1/2 if bank n was a counterparty

for every dollar traded in day d.

The second statistic is the reallocation index, which measures the degree to which a bank is

a net borrower or lender of fed funds. For a bank n on day d, it is defined as

Rnd =
υend − υrnd
υend + υrnd

.

Note that Rnd ∈ [−1, 1], with Rnd = −1 corresponding to a bank that only borrowed, Rnd = 1

corresponding to a bank that only lent, and Rnd = 0 corresponding to a bank that acted

as a pure intermediary—i.e., lending every dollar it borrowed. A typical bank n will have

either Rnd ∈ (−1, 0), meaning it is a net borrower that engaged in some intermediation, or

Rnd ∈ (0, 1), meaning it is a net lender that engaged in some intermediation.

4See Appendix A for a more comprehensive description of the relevant fed funds facts.
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To summarize the trading activity of a bank in a given year, we compute the average of a

bank’s participation rate and reallocation index across trading days in the year, and denote the

average measures Pn and Rn, respectively. A few banks stand out for their high participation

rates.5 For example, each of the top four most active banks individually accounts for at least

10% of the total volume of loans. Jointly, these four banks account for 45.6% in 2006, and

43.1% in 2019, implying that these four banks acted as a counterparty in almost all fed funds

traded during a typical day in those baseline years. In contrast, most banks have extremely

low participation rates. We regard this large skewness in loan trading activity across banks as

a key empirical regularity of the fed funds market structure.

We use the participation rate to sort banks into three groups, denoted S, M , and F , depend-

ing on whether the bank’s participation rate is low, medium, or high, respectively. Specifically,

in each year we label the four banks with highest participation rate as F ; the banks outside the

top four that have participation rate at least as large as 0.5%, as M ; and all other banks, as S.

We also construct a fourth group, denoted G, composed of Government Sponsored Enterprises

(GSEs), which are non-bank Fedwire participants with an active role in the fed-funds market,

but subject to different regulations.6 Next, we document how the participation rate of each

group relates their reallocation index.

Figure 2 shows the location of each fed-funds participant type i ∈ {F,M, S,G} in the

coordinate axes defined by the reallocation index, Ri, and the participation rate, Pi, in the

years 2006, 2014, 2017, and 2019. Each panel of Figure 2 is an illustration of what we refer

to as the fed-funds trading network.7 Each node in the network graph represents the set of

banks assigned to a particular type. The position of each node is given by the participation and

reallocation values of the group. The arrows from one node to another represent loans extended

from banks of that type to the other. The size of each node is proportional to the volume of

trade between banks of the that type. The width of each arrow is proportional to the volume

of trade between the bank types connected by the arrow. The colors of the arrows and nodes

are: light blue, dark blue, light red, or dark red, if the volume-weighted average interest rate

on the loans between the two types of banks, expressed as a spread over the EFFR, falls in the

5See Figure 12 in Appendix A, which shows the empirical cumulative distribution function (ECDF) of par-
ticipation rates, {Pn}, for all banks in our sample in the years 2006 (the circles), and 2019 (the crosses).

6The group of GSEs includes Federal Home Loan Banks, the Federal National Mortgage Association (Fannie
Mae), and the Federal Home Loan Mortgage Corporation (Freddie Mac).

7Appendix E.2.2 describes the calculation of the group-level reallocation index used to construct the network.
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first, second, third, or fourth quartile, respectively.8

Several stable trading patterns emerge from Figure 2. Banks of type F buy or sell virtually

all the fed funds that are traded (i.e., PF ≈ 1/2), and intermediate a large share of what they

trade, with a slight tendency to act as net lenders (i.e., RF is slightly positive). Banks of type

M and banks of type S tend to be net borrowers; the former account for more than 1/4 of

aggregate trade volume, and the latter much less (e.g., less than a quarter in 2006, and less

than 1/8 in later years). GSEs account for about a 1/8 of aggregate trade volume, act almost

exclusively as lenders, and their participation increases post-GFC.

The empirical fed-funds trading network paints a clear picture of trading patterns in the fed-

funds market, and is informative of the relevant dimensions of heterogeneity our theory should

match. Notice that through the lense of our theory, all else equal, banks with large, medium,

and low contact rates (i.e., βi), would tend to be sorted into groups F , M , and S, respectively,

since larger contact rates imply larger participation rates, and a comparative advantage for

intermediating funds between third parties.

4 Calibration

We calibrate the model to match the key statistics that describe fed funds trading activity in

the year 2019. The model primitives are: trading session, [0, T ], discount rate, r, set of bank

types, N, population shares of bank types, {ni}i∈N, beginning-of-day distributions of reserve

balances,
{
F i
0 (a)

}
i∈N, payment shock frequencies, {λi}i∈N, conditional size distributions of

payment shocks, {Gij}i,j∈N, bargaining powers, {θij}i,j∈N, intraday payoffs, {ui}i∈N, end-of-
day payoffs, {Ui}i∈N, and trading frequencies, {βi}i∈N. In the quantitative implementation it is

useful to augment the model to include proportional borrowing costs, {κi}i∈N, that proxy for

institutional and regulatory considerations that affect banks’ incentives to borrow in the fed

funds market.9 Our calibration strategy is as follows.

We regard the trading session in the model as an average trading day in a typical 14-

day reserve maintenance period. As discussed in Appendix A, there is little trading activity

between 9:00 pm on day h − 1 and 9:00 am on day h, so we think of [0, T ] as corresponding

to the time interval that starts at 9:00 am and ends at 6:30 pm EST on an actual trading day.

In the quantitative implementation of the theory we discretize the time interval [0, T ] into 800

8Arrow widths and node sizes are defined relative to trades within a year; thus not comparable across years.
9Appendix B (Section B.2) generalizes (1), (2), and (3) to the case with proportional borrowing costs.
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periods, so each period in the model corresponds approximately to a 42-second interval of the

trading day.10 With a model period this short, we abstract from pure discounting and set r = 0.

We sort fed-funds participants into four types, i.e., N = {F,M, S,G}, based on their regu-

latory treatment and participation rates (as described in Section 3). We set ni = Ni/
∑

j∈NNj ,

where Ni denotes the number of banks of type i ∈ N in the base year. A bank’s beginning-of-

day reserve balance in the theory corresponds to its beginning-of-day balance of unencumbered

reserves in the data—defined as the bank’s beginning-of-day reserve balance, net of regulatory

reserve requirements and predictable daily Fedwire transfers (both, outright payments, and fed

funds repayments).11 Thus, we set the theoretical beginning-of-day distributions,
{
F i
0 (·)

}
i∈N,

equal to the corresponding empirical kernel estimates of the empirical distributions of beginning-

of-day unencumbered reserves reported in Appendix A (Section A.3).

The frequencies of payment shocks, {λi}i∈N, are calibrated to match the empirical one-

second frequencies of payment shocks reported in Appendix A (Section A.2).12 The size dis-

tributions of payment shocks, {Gij}i,j∈N, are set equal to the corresponding empirical kernel

estimates reported in Appendix A (Section A.2). We set θij = θ if i ∈ {G} and j ∈ N \ {G},
and θij = 1/2 otherwise (i.e., unless one of the parties in the trade is a GSE, we abstract from

differences in relative market power purely driven by a bank’s type).

We set ui (a) = 0 for all (a, i) ∈ R × N (we abstract from banks’ intraday payoffs from

holding reserves, such as the regulatory costs associated with running an intraday overdraft

with the Federal Reserve). End-of-day payoffs are parametrized by

Ui (a) =
(
1 + I{0≤a}ιr + I{a<0}ιw

)
a, (5)

for any (a, i) ∈ R× {F,M, S}, where I{a<0} is an indicator function that equals 1 if a < 0 and

0 otherwise, ιr ≡ ιr + ιℓ, ιw ≡ ιw + ιℓ+ ιs, and a denotes end-of-day balance in excess of reserve

requirements.13 We use ιr to denote the interest rate that a bank earns from the Federal Reserve

10See Appendix D (Section D.1) for details.
11Appendix E (Section E.2.1) details the construction of bank-level beginning-of-day unencumbered reserves.
12In the discrete-time approximation that we use for computation purposes (Section D.1 in Appendix D), λi

corresponds to the probability that a bank of type i receives a payment shock in a one-second time interval.
13Since our calibration strategy maps beginning-of-day reserve balances in the theory to unemcumbered reserves

in the data, which are reserves in excess of reserve requirements (and net of predictable payments), we specify a
bank’s end-of-day payoff as a function of its excess reserves. This allows us to have end-of-day payoff functions
that are type specific but not bank specific, despite the fact that in the data, two banks will typically have different
reserve requirements even if they are of the same type, i ∈ N. To see this, let Ui(b, b) be the end-of-day payoff of
a bank of type i with reserve requirement b, and reserve balance b (gross of the reserve requirement). We would
parametrize this function as Ui (b, b) = b + ιrb +

(
I{0≤b−b}ιr + I{b−b<0}ιw

)
(b− b), which is equivalent to Ui(a)
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per dollar of end-of-day reserves (IOR), and ιℓ to represent a liquidity return that proxies for

a bank’s benefits from holding reserves that are not captured by the administered rates.14 We

use ιw to denote the (primary credit) Discount-Window rate (DWR) that the Federal Reserve

charges a bank that needs to borrow to make up an end-of-day shortfall of reserves relative to

the required level, and ιs to represent the additional costs associated with borrowing from the

Discount Window.15 For GSEs, the end-of-day payoff is UG (a) =
(
1 + I{0≤a}ιo + I{a<0}ιw

)
a,

with ιo ≡ ιo + ιℓ, where ιo denotes the interest rate that the Federal Reserve offers on the

overnight reverse repo facility.16 The administered rates, i.e., ιr, ιw, and ιo, are set equal to

their empirical counterparts in the base year.

The remaining eleven parameters, θ, ιℓ, ιs, and {βi, κi}i∈N, are calibrated so that the equilib-

rium of the model matches the following eleven empirical moments: (1) average value-weighted

fed funds rate; (2) average value-weighted fed funds rate for loans with rates lower than the

IOR; (3) regression estimates of the “liquidity effect” (the slope of the empirical aggregate

demand for reserves in the base year, as estimated in Appendix A.5); (4) ratio of the average

number of loans traded by banks of type F relative to the average number of loans traded by

all banks; (5)-(8) reallocation indices {Ri}i∈N; (9)-(11) participation rates {Pi}i∈N\{F}.
17

Table 1 reports the parameter values, the targeted moments, and the corresponding theo-

retical moments for the 2019 calibration. Banks of type F , M , and S, accounted for about 1%,

4%, and 92%, of all the institutions that were active in the fed funds market in 2019, respec-

tively. To interpret the frequencies of payment shocks, {λi}i∈N, recall that λi represents the

probability that a bank of type i receives a payment shock in a one-second time interval, so for

example, λM = 0.257 implies a bank of type M receives a payment shock approximately every

4 seconds, on average. Similarly, λF = 0.920 implies a bank of type F receives approximately a

payment shock per second, and λS = 0.011 implies a bank of type S receives a payment shock

in the sense that they only differ by a constant, i.e., Ui (b, b) = Ui (a) + (1 + ιr) b, where a ≡ b− b denotes excess
reserves, as in (5).

14For example, ιℓ may stand in for the additional return associated with the use of reserves as means of
payment, or for the additional return resulting from lending reserves outside the fed funds market (e.g., in repo
markets, or as loans to corporate or retail bank customers).

15Stigma associated with Discount-Window borrowing is a common explanation for why banks may buy fed
funds at a premium over the DWR (see, e.g., Artuç and Demiralp (2010), Ennis and Weinberg (2013), Armantier
et al. (2015), Ennis (2019), and Klee et al. (2021)). Another reason is that Reserve Banks require a perfected
security interest in all collateral pledged to secure Discount-Window loans, which entails costs for the borrower.

16We use ιo rather than ιr in the payoff for GSEs because regulation prevents them from earning interest on
reserves. We use ιr rather than ιo in the payoffs of other bank types because ιo ≤ ιr throughout our sample.

17The participation rate of type F banks is not an explicit calibration target because it is implied by the
participation rates of the other three bank types, since

∑
i∈N Pi = 1.
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approximately every 90 seconds, on average. The values of ιw (DWR), ιr (IOR), and ιo (ON-

RRP) are set to 3.00%, 2.35%, and 2.25% per annum, respectively, which were the administered

policy rates in effect from May through July of 2019.

The calibration strategy delivers a liquidity return (ιℓ) of 4.9 bps per annum, an additional

cost associated to Discount-Window borrowing (ιs) of 75.8 bps per annum (i.e., about one

quarter of the DWR), and θ = 1/20, which means that a GSE reaps 5% of the total gains from

lending to a non-GSE. The frequency of trade, βi, is interpreted as the probability that a bank

of type i contacts a trading partner during a 42-second time interval. Thus, the calibrated

values {βi}i∈N imply that banks of type F , M , S, and G, trade fed funds approximately every

23 minutes, 4.86 hours, 16.7 hours, and 3.24 hours, respectively. The calibration also ensures

that the magnitude of the “liquidity effect” in the theory is in line with the range of empirical

estimates for the year 2019 reported in Appendix A.5.18 The borrowing costs needed to match

the calibration targets, {κi}i∈N, which proxy for institutional and regulatory considerations

that affect banks’ incentives to buy fed funds, are positive for banks of type F and S, and zero

for banks of type M .19

5 Validation

In this section we report the model fit of empirical price and quantity observations not targeted

in the calibration. We organize the material in five sections. The first focuses on the cross-

sectional distribution of loan rates for all transactions. The second, on the distribution of

loan rates for transactions with rates higher than the DWR. The third, on the distribution of

borrowing and lending rates for each bank type. The fourth, on the distribution of bilateral

borrowing and lending rates for each pair of bank types. The fifth, on the trading network.

The main takeaway is that the model successfully matches a wide range of moments that were

not targeted by the calibration, which lends credibility to its quantitative predictions.

18Figure 20 in Appendix A shows the magnitude of the liquidity effect in the calibrated model along with the
95% confidence bands for the regression estimates for the period 2019/05/02–2019/09/13 presented in Appendix
A.5. In the model, the liquidity effect is computed by extracting $100 bn reserves (approximately 2 standard
deviations of the size distribution of reserve-draining shocks) using the procedure described in Appendix A.6.

19The value of κG is set large enough to match the observation that GSEs essentially do not borrow in the fed
funds market, but its exact value is inconsequential.
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5.1 Distribution of loan rates

Figure 3 shows the empirical and theoretical cumulative distribution functions of fed funds

rates negotiated in the year 2019, along with the administered rates prevailing in the sample

period (all expressed in percent per annum).20 The model delivers a reasonable fit for the

cross-sectional distribution of fed funds rates, which was not targeted in the calibration.21

5.2 Conditional distribution of loan rates above the DWR

As in the data, banks in the model sometimes trade at rates higher than the DWR. (This is

possible in the model because ιs is calibrated to a positive value.) During the sample period

2019/06/06–2019/07/31 the DWR was set at 3%; the 10th percentile, mean, and 90th percentile

were 3%, 3.1%, and 3.3%, respectively, both in the data and in the calibrated model. The

maximum loan rate observed in our sample was 3.45%, and the maximum possible rate a bank

is willing to pay in the model is ιw + ιℓ + ιs = 0.038. Thus, the model delivers a very good

fit of the conditional distribution of loan rates above the DWR, which was not targeted in the

calibration.

5.3 Bid-ask spreads

Each of the panels on the right side of Figure 4 shows an empirical cumulative distribution

function of borrowed reserves over borrowing rates, denoted HB
i (represented by a solid line),

and an empirical cumulative distribution function of lent reserves over lending rates, denoted

HL
i (represented by a dashed line), for i ∈ {F,M, S}. In words, HB

i (ι) is the proportion of

reserves borrowed by banks of type i that bear interest rates lower than ι, and HL
i (ι) is the

proportion of reserves lent by banks of type i that bear interest rates lower than ι.

Each of the panels on the left side of Figure 4 shows the theoretical counterpart of the

adjoining right-side panel. The top-left and middle-left panels show the theory predictsHL
i (ι) ≤

20Data are for every trading day in the period 2019/06/06–2019/07/31, and covers eight reserve maintenance
periods during which the policy rate remained constant, and the administered rates (DWR, IOR, ONRRP) were
as in our baseline calibration. To obtain the equilibrium rates for 2019, the model is calibrated as in Table 1.

21The model, however, does not generate enough dispersion of rates relative to the data. This is the case
for loans that trade above the IOR, but also for loans that trade below the IOR. One way to match the larger
empirical dispersion of loans with above-IOR rates would be to allow for heterogeneity in bargaining powers
across banks of types, i.e., to let θij differ in trades between two non-GSEs. Notice that a significant part of the
large dispersion for below-IOR trades in the data comes from trades with rates lower than the ONRRP. This
observation is difficult to rationalize through the lens of the theory, and may be indicative of some repo loans
being misclassified as fed funds in our dataset (e.g., as suggested by Armantier and Copeland (2015)).
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HB
i (ι) for i ∈ {F,M}. That is, banks of type F and M tend to borrow at lower rates than

they earn when they lend. This theoretical prediction also holds in the data, as long as we

focus on loans with rates that are not lower than the IOR (2.35%).22 In contrast, according to

the bottom-left panel, the theory predicts HB
S (ι) ≤ HL

S(ι), i.e., banks of type S tend to borrow

at higher rates than they earn when they lend.23 This theoretical prediction also holds in the

data, and the fit is remarkably good for loans with rates that are not lower than the IOR.

5.4 Distributions of loan rates between pairs of bank types

Each of the panels on the right side of Figure 5 shows an empirical cumulative distribution

of rates for loans extended from bank type i ∈ {F,M,S} to bank type j ∈ {F,M,S}. For

example, for each interest rate ι on the horizontal axis, the height of the curve labeled “S” in

the top right panel represents the fraction of the total volume of loans extended from banks of

type “F” to banks of type “S” with interest rate less than or equal to ι. Each of the panels

on the left side of Figure 5 shows the theoretical counterparts of the adjoining right-side panel.

The theory predicts that, regardless of lender type, banks of type “S” tend to borrow at higher

rates than banks of other types, a prediction clearly validated by the data.

5.5 Fed funds trading network

The model replicates quite well several features of the fed-funds trading network, such as the

direction and volume of the loans between and within bank types (represented by the direction

of the arrows, their width, and the sizes of the nodes in the bottom panel of Figure 21, in

Appendix A). The model, however, predicts a significant volume of loans from GSEs to banks

of type S that is not present in the data, perhaps reflecting institutional details that cause

GSEs to lend reserves only to a relatively small subset of counterparties.

6 Aggregate demand for reserves

In this section we show that our quantitative theory generates an aggregate demand for reserves,

i.e., a negative relationship between the aggregate quantity of reserves, Q, and the volume-

22As mentioned in footnote 21, rates below the IOR are likely to correspond to repo loans that are misclassified
as fed funds by the Furfine algorithm.

23The model counterparts of HB
S (ι) and HL

S (ι) are constructed excluding loans between a G and a bank of
type S. The rationale is that our model abstracts from the institutional details that make these trades very rare
in the data. For example, there was only one loan of this kind in our sample period.
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weighted average of the equilibrium loan rates, ι∗. In Section 6.1 we explain the mapping

between the demand and supply of reserves in the model and in the data. In Section 6.2 we

show how structural parameters of the model, Π ≡ {βi, λi, {θij , Gij}j∈N , ui, Ui}i∈N, affect the

shape and position of the aggregate demand for reserves. In Section 6.3 we use our quantitative

theory to produce a global estimate of the aggregate demand for reserves for the United States,

and compare it with the estimates implied by standard reduced-form econometric approaches.

We find that seemingly reasonable econometric estimations fail to deliver robust results: they

produce implausible out-of-sample predictions, and estimates are very sensitive to specification

details. In Section 6.4 we summarize the general lessons for reserve-demand estimation that

we learn from contrasting the results of our quantitative-theoretic approach with reduced-form

approaches.

6.1 Demand and supply of reserves: model and data

Let ι∗ = D(Q; Π) denote the aggregate demand for reserves implied by the theory. To establish

a correspondence between the demand and supply of reserves in the theory and in the data, in

the remainder of this section we: (a) explain how to obtain the mapping D in the quantitative

model; and (b) discuss the empirical measure of the supply of reserves Q that we feed into the

model. We discuss these two steps below.

We compute the mapping D with the following procedure. First, we calibrate the parame-

ters Π to the year 2019 (as in Table 1). Second, we calculate the volume-weighted average of

the equilibrium loan rates, ι∗, for a range of values for Q. Notice that Q ≡
∑

i∈N ni

∫
adF i

0 (a),

so to vary Q we need to specify how to vary the whole beginning-of-day distribution of reserves,

{F i
0, ni}i∈N. Our approach is to vary Q by varying this distribution along a linear interpo-

lation of two empirical beginning-of-day distributions estimated for two base years. Specifi-

cally, we start from two empirical distributions, {F̄ y, n̄y}y∈{y0,y1}, with F̄ y ≡ {F̄ i
y}i∈N and

n̄y ≡ {n̄i
y}i∈N, where n̄i

y is the empirical estimate of the proportion of banks of type i for year

y, and F̄ i
y is the beginning-of-day distribution of reserve balances across banks of type i as

estimated for year y.24 Let
{
xiy (pn)

}N

n=1
denote the set of N quantiles for the empirical distri-

24The estimation of the beginning-of-day distributions is described in Section 4 and Appendix A.3. We use
y0 = 2017 and y1 = 2019 as endpoints for our interpolation procedure because this choice maximizes the sample
variation in total reserves during the post-GFC-regulation era (prior to the large reserve injection in response to
the COVID shock in the year 2020). As shown in Figure 22 (Appendix E), 2017 is the post-GFC-regulation year
with highest level of total reserves ($2,254.27 bn, which is roughly the pre-2020 historical peak), while the year
2019 has the lowest level of total reserves in the post-GFC-regulation era (roughly $1,568.26 bn).
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bution F̄ i
y, i.e., x

i
y (pn) is the number defined by F i

y

(
xiy (pn)

)
= pn for each n ∈ {1, ..., N}, where

{pn}N+1
n=0 satisfies pN+1 = 1− p0 = 1, with pn < pn+1. We use the two empirical distributions,

{F̄ y, n̄y}y∈{y0,y1}, to generate a family of beginning-of-day distributions, {F̄ yω , n̄yω}ω∈G, where
G ⊂ R is a grid, n̄i

yω
≡ ωn̄i

y1
+(1−ω)n̄i

y0
, and F̄ i

yω
is a distribution constructed by quantile inter-

polation, with quantiles given by xiyω
(pn) ≡ ωxiy1

(pn) + (1− ω)xiy0
(pn) for n ∈ {1, . . . , N}.25

For each element of {F̄ yω , n̄yω}ω∈G we compute Qyω ≡
∑

i∈N n̄i
yω

∫
adF̄ i

yω
(a) and the corre-

sponding equilibrium value-weighted fed funds rate, ι∗yω
. This procedure delivers a collection of

pairs,
{
(Qyω , ι

∗
yω
)
}
ω∈G, that define the mapping ι∗yω

= D(Qyω ; Π)—the aggregate demand for

reserves generated by the theory.

The supply of reserves that we feed into the model corresponds to an empirical measure of

beginning-of-day reserves that we term active excess reserves—because it is net of predictable

transfers, net of Regulation D and LCR requirements, and only includes banks that were active

(had at least one fed funds transaction) in the baseline calibration year. Thus, active excess

reserves is the measure of “Q” in the primary horizontal axis of any figure that displays the

demand for reserves generated by the theory. To make our results easier to interpret, we will

sometimes prefer to express the quantitative implications of the theory in terms of the better-

known measure of total reserves, which differs from active excess reserves in that it is gross

of reserve requirements and includes all institutions that hold reserve balances at the Federal

Reserve Banks.26 To this end, in Appendix E (Section E.2.5) we devise an empirical transforma-

tion to translate active excess reserves into total reserves. To facilitate the translation between

these units we often complement the primary horizontal axis of active excess reserves with a

secondary horizontal axis (above the figure) with the corresponding values of total reserves.

6.2 Reserve demand counterfactuals

In all panels of Figure 6, the curve labeled “Benchmark” is the aggregate demand mapping

ι∗yω
= D(Qyω ; Π) for the model calibrated as in Table 1. We wish to highlight two features of

this demand for reserves generated by the theory. First, it exhibits the kind of logistic sigmoid

25See Appendix A (Section A.6) for more details on this interpolation procedure.
26Total reserves at weekly frequency is published in Federal Reserve Balance Sheet: Factors Affecting Reserve

Balances - H.4.1 (shown in Figure 22 in Appendix E), and available at monthly frequency as “TOTRESNS”
at https://fred.stlouisfed.org. The average quantity of active excess reserves was about $1,150.86 bn in
2017, and $910.73 bn in 2019. The corresponding quantities of total reserves in 2017 and 2019 were $2,254.27 bn
and $1,568.26 bn, respectively. Fed funds transfers approximately sum to zero in our sample of active banks, so
predictable transfers does not contribute much to the difference between total reserves and active excess reserves.
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shape that is characteristic of the popular “Poole model”.27 Second, the demand lies within

the DWR-IOR corridor. Thus, in the baseline calibration, despite there being GSEs that earn

a lower interest on reserves than banks (i.e., the ONRRP rather than the IOR), the average

equilibrium fed funds rate is above the IOR for all levels of reserves. This finding is in line

with the evidence: The EFFR was consistently above the IOR during the period of 2019 when

the administered policy rates were the same as in our baseline calibration.28 A benefit of our

structural approach is that it is well-suited to study the behavior of the aggregate demand

relationship under different policy or marketstructure counterfactuals, which we turn to next.

The top-left panel of Figure 6 shows two experiments. In the first, the DWR is increased

by 50 bps (so that it is equal to the ONRRP plus 125 bps, rather than equal to the ONRRP

plus 75 bps as in the baseline calibration). This shifts the demand upward, with the size of

the shift being decreasing in the quantity of reserves. Intuitively, the DWR has little effect

on the equilibrium average interest rate when reserves are abundant, and a stronger effect

when reserves are scarce. The second experiment consists of increasing the IOR by 15 bps (so

that it is equal to the ONRRP plus 25 bps, rather than equal to the ONRRP plus 10 bps as

in the baseline calibration). This policy change increases the equilibrium average rate when

the quantity of reserves is relatively large, and it also implies that—if reserves are abundant

enough—the equilibrium average fed funds rate lies between the IOR and the ONRRP. This

observation is in line with evidence: The EFFR was consistently between the IOR and the

ONRRP during most of the post-GFC period ranging from 2008 until 2018 when, as in this

experiment, the IOR was set 25 bps above the ONRRP. The top-right panel of Figure 6 shows

that increasing all administered rates (DWR, IOR, and ONRRP) by 75 bps simply causes a

parallel upward shift in the aggregate demand for reserves.

The counterfactuals involving changes in administered policy rates deliver a valuable insight

for empirical work: In a floor system, the aggregate demand for reserves shifts and rotates in

response to changes in any of the administered policy rates, not just changes in the IOR, or in

the DWR-IOR spread. We stress this point because, as we discuss in Section 6.3 and Section

6.4, existing econometric reduced-form estimations of the demand for reserves in the United

States do not control for the IOR-ONRRP spread.

The bottom-left panel of Figure 6 shows three experiments. The first is to multiply the

27See, e.g., p. 784 in Poole (1968).
28See Figure 22 in Appendix E.
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trading probabilities of all bank types by a factor of 10, which makes the marketstructure more

competitive (i.e., “less OTC”), reducing rates (and increasing the slope of the demand) when

the quantity of reserves is low to moderate. The second marketstructure experiment is to set

βF = 0, which effectively excludes all banks of type F from fed funds trading, and causes the

aggregate demand for reserves to rotate clockwise around an intermediate quantity of aggregate

reserves (about $700 bn). This experiment causes the average fed funds rate to rise for relatively

low levels of reserves, and to fall for relatively high levels of reserves. This rotation reflects the

intermediation role that banks of type F play in the equilibrium. When reserves are scarce

there are many banks with deficient reserve balances who, absent type-F counterparties, find it

more difficult to meet a counterparty eager to lend, which reduces their effective market power

thus leading to higher negotiated loan rates on average. When reserves are abundant there

are many banks with excess reserves who, absent type-F counterparties, find it more difficult

to meet a counterparty eager to borrow, thus leading to lower average negotiated rates. The

third experiment is to eliminate the proportional borrowing costs from the baseline calibration.

This shifts the aggregate demand for reserves upward, reflecting that the borrowing costs stifle

individual banks’ incentives to borrow.

The bottom-right panel of Figure 6 shows two experiments involving payment risk. One

eliminates payment shocks for all banks, i.e., sets λi = 0 for all i ∈ N, and another sets λi = λF

for all i ∈ N, i.e., all bank types experience the same—very high—frequency of payment shocks

as banks of type F . In both cases the result is an upward shift in the demand for reserves. In

the second experiment the demand shifts upward due to a heightened precautionary motive for

holding reserves. In the first experiment the upward shift occurs because of a compositional

effect: In an equilibrium with payment shocks, there are banks that borrow because their

balances are deficient, and banks with moderate positive reserves that borrow to self-insure

against payment shocks. The former value reserves more, and thus are willing to pay higher

rates than the latter. The precautionary motive for borrowing disappears when λi = 0 for all

i ∈ N, and this increases the average negotiated rate.

6.3 Quantitative-theoretic reserve demand estimation

As discussed in Section 1, the floor system that the Federal Reserve has chosen as operating

framework for monetary policy implementation relies on the ability to ascertain what level of

reserves is “ample enough” so that active management of the supply of reserves is not required
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to instrument the fed funds rate target. In other words, operating a floor system requires global

knowledge of the aggregate demand for reserves, and in particular, reliable estimates of its slope

for wide ranges of the supply of reserves. This presents two empirical challenges.

The first challenge is the potential endogeneity of the supply of reserves, which complicates

the estimation of the demand equation. In terms of the simple demand-and-supply picture in

the first panel of Figure 1, the issue is to identify exogenous variation in the quantity of reserves

that allow to estimate the slope of the demand. This problem is well-understood, and has been

addressed by the empirical literature that studies the “liquidity effect”.29

The second challenge is to obtain global estimates for the slope of the demand; i.e., to identify

the slope of the demand for a range of values of the supply of reserves that is wide enough to

span the “abundant”, “ample”, and “scarce” segments of the demand curve, as illustrated in

the top-right panel of Figure 1. The complication is that spanning substantial variation in the

supply of reserves usually entails spanning a substantial period of time during which the demand

for reserves itself is likely to have shifted due to structural changes, e.g., in the marketstructure

of the fed funds market, or in banks’ incentives to hold reserves due to changes in regulation or

policy. For example, as shown in Section 6.2, even technical adjustments to the IOR-ONRRP

policy spread cause shifts in the demand for reserves, making the local-global estimation gap

hard to bridge with empirical methods that are not guided by theory.

Indeed, this low-frequency demand-shift identification problem has not been overcome by

the empirical literature on “liquidity effects”—possibly due to limited theoretical guidance on

the key structural variables that determine the shape and position of the aggregate demand for

reserves. Available empirical estimates of liquidity effects tend to be local, i.e., estimated from

daily time-series variation in the quantity of reserves over relatively short sample periods during

which the average quantity of reserves remains relatively stable.30 We will use our quantitative

29We discuss these identification issues in Appendix A.5, where we also report estimates of the slope of the
reserve demand for different sample periods based on the identification strategies of Hamilton (1997), Carpenter
and Demiralp (2006), and Afonso et al. (2022).

30Hamilton (1997), Carpenter and Demiralp (2006), and our estimates of the “liquidity effect” in Appendix A
(Section A.5) are examples of this standard methodology. Afonso et al. (2022) follow an alternative methodology
that involves estimating a time-varying vector autoregressive model at daily frequency (with an instrumental
variable approach to address endogeneity of the supply of reserves) to obtain a 10-year time series of daily
estimates of the elasticity of the fed funds rate to instrumented variation in the aggregate quantity of reserves
(from 2010 until 2020). Their estimation, however, cannot recover the whole demand function. The reason is that
without information on whether structural factors have shifted the demand schedule during the sample period, it
is not possible to infer the global shape of the reserve demand from a sequence of (local, linear, daily) estimates
of the sensitivity of the fed funds rate to (instrumented) changes in aggregate reserves. Having said this, below
we will find that the reduced-form estimates from Afonso et al. (2022) can be a useful guide once complemented
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model to bridge this local-global gap. The idea is to use the structure imposed by the theory,

i.e., the equilibrium aggregate demand relationship, ι∗ = D(Q; Π), with the microstructure and

policy parameters, Π, calibrated to match the key micro-level and market-level moments that

describe the fed funds market—and in particular the available local estimates of the liquidity

effect in the base year—to estimate the global shape of the aggregate demand for reserves.31

Figure 7 illustrates our quantitative-theoretic identification approach, and contrasts it with

a flexible atheoretical reduced-form econometric approach commonly used to estimate reserve

demands. The top-left panel displays pairs of empirical observations of the total quantity of

reserves, and the corresponding EFFR-IOR spread for every trading day in the sample period

2017/01/20–2019/09/13. Through the lens of standard theory (e.g., Poole (1968)), each of these

observations depicts the intersection point of the supply and demand for reserves on a given day.

To inform monetary policy operations, one needs to estimate the liquidity effect for each level of

reserves over a wide range of reserves. A common approach is to posit a flexible reduced-form

model of the demand for reserves, e.g., st = D(Qt), where st denotes the EFFR-IOR spread on

day t and Qt denotes the aggregate quantity of reserves at the end of day t, with

D(Qt) ≡ s+
s− s

1 + e(Qt−Q0)ξ
, (6)

and estimate the parameters (s, s, ξ,Q0). This generalized logistic specification is often deemed

a natural choice for D(·) because it can fit the stylized logistic sigmoid shape of the reserve

demand in the Poole (1968) model. The top-left panel of Figure 7 displays the fitted demand

curve that results from estimating (6) on the full sample (2017/01/20–2019/09/13) by nonlinear

least squares (NLS).32 This estimation presumes all observations lie on a single demand curve.33

The estimated slope evaluated at the mean quantity of total reserves for the full sample (about

$1,974.69 bn) is −0.016, which means a $1 bn decrease in total reserves increases the EFFR by

with our quantitative theory, which can help identify the structural shifts in the demand for reserves.
31Alvarez and Argente (2023) use a similar strategy to extrapolate a demand for cash-paid Uber rides in Mexico

using relatively narrow empirical variation in prices.
32See Appendix E (Section E.2.4) for details.
33In a similar estimation exercise, Afonso et al. (2022, Sec. 6) justify this particular identifying assumption

by splitting their sample period (2010–2021/03/29) according to the different low-frequency cycles of expansion
and contraction of the Federal Reserve balance sheet. Specifically, they split it into three periods: the initial
post-GFC expansionary period (2010–2014), the subsequent post-GFC and pre-COVID contractionary period
(2015–2020/3/13), and the most recent post-COVID expansionary period (2020/03/16–2021/03/29). Thus, all
the data points displayed in our Figure 7 belong to their pre-COVID contractionary period, which Afonso et al.
(2022) fit with a single reduced-form demand curve (the gray curve in their Figure 9, p. 30), like we do in the
top panel of Figure 7.
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0.016 bps when the supply of total reserves is around $2 tn.34

In Section 6.2 we showed that keeping the DWR-ONRRP spread constant, changes in the

IOR-ONRRP spread shift the demand for reserves. This minimal theoretical insight implies

the data points from the sample period 2017/01/20–2019/09/13 plotted in the top-left panel of

Figure 7 do not all lie on the same demand curve, contrary to what is implicitly assumed when

running (6) on the full sample. The bottom-left panel of Figure 7 displays the same data points

as the top-left panel, but partitioned into four subsamples, each determined by the size of the

IOR-ONRRP spread: 10 bps (2019/05/02–2019/09/13), 15 bps (2018/12/20–2019/05/01), 20

bps (2018/06/14–2018/12/19), or 25 bps (2017/01/20–2018/06/13).35 The bottom-left panel

also displays the four fitted demand curves that result from estimating (6) on each subsample

by nonlinear least-squares.

To illustrate the perils associated with the atheoretical demand estimation in the top-left

panel of Figure 7, focus on the demand estimation for the policy regime with IOR-ONRRP

equal to 10 bps in the bottom-left panel, and notice two discrepancies with the top-left panel.

First, the liquidity effect at about $1,974.69 bn (the mean of total reserves for the full sample)

is −0.0001 bps; but it was estimated to be −0.016 bps when fitting a single demand curve to the

full sample—much bigger in absolute value.36 Second, suppose we want to use the estimated

demand to identify the quantity of reserves that determines the end of the “ample” and the

beginning of the “abundant” range for reserves, i.e., we want to estimate a quantity such as the

Q1 illustrated in the top-right panel of Figure 1 above which the slope of the demand is virtually

zero. For practical purposes we adopt the convention that a supply of reserves, Q, is considered

“abundant” if reducing Q by $1 bn increases the EFFR by no more than on hundredth of a

basis point. Given this definition of “abundant”, the demand estimated for the subsample with

IOR-ONRRP equal to 10 bps implies Q1 = $1,300 bn, while the demand estimated on the full

sample implies Q1 = $2,943 bn. Discrepancies of this magnituce should make central bankers

wary of relying on these kinds of estimations to guide monetary policy operations.

A shortcoming of the atheoretical reduced-form econometric approach to estimating a global

aggregate demand for reserves is that the extrapolations the empirical model makes for ranges of

Q for which there are not many observations (e.g., very low values of Q) can be very sensitive

34This local estimate (at about $2 tn) is similar to the linear estimates in Appendix A.5.
35The DWR-ONRRP spread was constant (equal to 75 bps) throughout the full sample (see Figure 22 in

Appendix E).
36The slope of the demand estimated for the subsample with IOR-ONRRP equal to 10 bps evaluated at the

mean for the subsample (about $1,521.48 bn of total reserves) is −0.0186 bps.
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to our ability to identify the structural parameters that shift the aggregate demand being

estimated. It seems sensible to try to control for these “policy regimes”, and the sample split

in the bottom-left panel of Figure 7 is an attempt to do so; but is this the right way to split

the sample? Can variation in other policy or microstructure parameters shift or rotate the

aggregate demand for reserves? We propose a quantitative theory-based approach to tackle

these questions.

The top-right panel of Figure 7 depicts several theoretical demands, ι∗yω
= D(Qyω ; Π). The

curve labeled “IOR-ONRRP = 10 bps” is the demand generated by the baseline calibration.

The curves labeled “IOR-ONRRP = 15 bps”, “IOR-ONRRP = 20 bps”, and “IOR-ONRRP =

25 bps” are the theoretical demands corresponding to ιr−ιo = 0.0015/360, ιr−ιo = 0.0020/360,

and ιr − ιo = 0.0025/360, respectively, with all other parameters as in the baseline calibration.

The top-right panel of Figure 7 also displays pairs of empirical observations of the quantity

of active excess reserves, and the corresponding EFFR-IOR spread for every trading day in

the sample period 2017/01/20–2019/09/13. As before, the sample is partitioned into four

subsamples, each determined by the size of the IOR-ONRRP spread: 10 bps (2019/05/02–

2019/09/13), 15 bps (2018/12/20–2019/05/01), 20 bps (2018/06/14–2018/12/19), or 25 bps

(2017/01/20–2018/06/13). The bottom-right panel of Figure 7 displays the same data points

as the top-right panel, along with the four fitted demand curves that result from estimating (6)

on each subsample by nonlinear least-squares.

There are two takeaways from comparing the top-right and bottom-right panels of Figure

7. First, the quantitative-theoretic demands fit the data well.37 Second, locally, i.e., for range

of Q for which there is available data, the theoretical demand in the top-right panel and the

reduced-form demands in the bottom-right panel fit about as well.38 However, as is evident

from the figure, their predictions for lower levels of Q are quite different. To illustrate this, focus

on the subsample with IOR-ONRRP spread equal to 10 bps. The reduced-form model in the

bottom-right panel estimates the steepest point on the corresponding demand at about $934 bn

37The height and slope of the demand curve labeled “IOR-ONRRP = 10 bps” were calibrated to match
the average EFFR-IOR spread and the local liquidity effect for the corresponding subsample, but the other
subsamples were not targeted. The theoretical demand labeled “IOR-ONRRP = 25 bps” predicts an EFFR-IOR
spread that is somewhat high, but it only takes a 2 bp reduction in the liquidity return parameter, ιℓ, to bring
the theoretical EFFR-IOR spread in line with the data.

38In terms of local fit, the reduced-form specification is, as expected, no worse than the theory since it is more
flexible. E.g., it allows us to choose four parameters, i.e., (s, s, ξ,Q0), to match the data corresponding to each
subsample, while the theoretical demands corresponding to each subsample are generated by changing only one
parameter, i.e., the policy spread ιr-ιo.
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of active excess reserves (or about $1,637 bn of total reserves), and predicts that reducing the

supply of reserves below $800 (or about $1,255 bn of total reserves) would have essentially no

effect on the equilibrium EFFR-IOR spread.39 In contrast, our theory estimates the steepest

point on the demand at about $500 bn (or about $662 bn of total reserves), and predicts

that reductions in the supply of reserves start to cause significant increases in the EFFR-IOR

spread for levels of reserves roughly below $700 of active excess reserves (below $1,064 bn of

total reserves). For the reduced-form approach, the extrapolation to out-of-sample levels of Q

is essentially driven by the assumed functional form. In contrast, our quantitative-theoretic

extrapolation is based on the explicit equilibrium borrowing-and-lending activity that underlies

the equilibrium aggregate demand relationship, ι∗ = D(Q; Π), with the microstructure and

policy parameters, Π, calibrated to match the key micro-level and market-level moments that

describe the fed funds market.

Another popular reduced-form estimation strategy is to replace (6) with D(Qt) ≡ a +

b ln(Qt), and estimate the semi-log specification st = D(Qt) using ordinary least squares. Figure

8, which is analogous to Figure 7, contrasts the result from this approach with our quantitative-

theoretic estimation. The main points we made for the logistic NLS estimation still hold. First,

comparing the top-left and bottom-left panels of Figure 8 it is clear that the global estimates

of the demand for reserves change substantially when incorporating the minimal theoretical

insight that changes in the IOR-ONRRP spread act like demand shifters. Second, even after

controlling for IOR-ONRRP regime, as we do in the bottom-left and bottom-right panels of

Figure 8, our quantitative-theoretic estimates (top-right panel) are still quite different from

the reduced-form estimates (bottom-right panel). According the the former, the slope flattens

somewhere above $1.3 tn of total reserves, while the slope of the latter remains positive even if

total reserves exceed $2.5 tn. For low levels of reserves the model-generated demand becomes

quite steep at about $600 bn of total reserves and flattens at about $340 bn, while the slope

of the reduced-form estimate increases exponentially as total reserves decrease, and eventually

becomes implausibly large.

39The reduced-form demands estimated with active excess reserves (reported in the bottom-right panel of
Figure 7) are essentially identical to the ones estimated with total reserves (reported in the bottom-left panel).
E.g., the steepest point on the reduced-form demand estimated on the subsample with IOR-ONRRP spread of
10 bps in the bottom-left panel is at $1,637 bn of total reserves; the slope at that point is −0.0002 bps, which is
the same slope that the reduced-form demand estimated using active excess reserves achieves at $934 bn.
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6.4 Lessons for the estimation of reserve demands

We draw two conclusions from comparing the quantitative-theoretic and the reduced-form esti-

mations. In Appendix G we show these conclusions generalize to other reduced-form estimation

strategies, including a version of the semi-log specification with the controls proposed by López-

Salido and Vissing-Jorgensen (2023), as well as variants of the logistic NLS estimation.

First, our theory identifies a set of structural “shifters” of the aggregate demand relation-

ship that can help with the identification problems that pervade reduced-form econometric

estimations of the aggregate demand for reserves. For example, the theoretical counterfactuals

in Section 6.2 show that the set of shifters include: the widths of the spreads between the

administered policy rates; the parameters that regulate the trading frequencies and bargaining

powers of the different types of fed funds participants; the bank-level idiosyncratic payment-

shock processes; and balance-sheet borrowing costs induced by regulation.

Second, while our quantitative-theoretic approach and the reduced-form approaches deliver

estimates of the demand for reserves that fit available data equally well, these approaches have

very different out-of-sample predictions. In other words, all the estimated demand relationships

are similar locally, i.e., for the range of reserve balances that have been observed since 2017, but

are very different globally, i.e., for levels of reserves that the fed funds market has not visited

in the past fifteen years.

Our quantitative-theoretic approach delivers global estimates that differ significantly from

the estimates of reduced-form econometric approaches. And in turn, seemingly reasonable

reduced-form econometric approaches deliver global estimates that are different from one an-

other. So, which estimation approach should central bankers favor?

We think our quantitative-theoretic approach has a clear advantage over the reduced-form

econometric approaches whenever the global estimation entails large extrapolations from ob-

served data. The advantage is that in our quantitative-theoretic approach, the global (out-

of-sample) shape of the reserve demand is determined by the choice of “deep” microstructure

parameters that can be disciplined with micro data.40 In contrast, the out-of-sample shape of

the reserve demand from reduced-form econometric specifications depends critically on ad hoc

40As discussed in Section 4, our way of disciplining the shape of the demand is to calibrate the microstructure
parameters so that the model replicates a wide array of high-frequency micro-level loan and payment data from
Fedwire. As an additional source of validation (discussed in Section 5), recall that the calibrated model is also
consistent with micro-level empirical observations not targeted in the calibration, such as the cross-sectional
distribution of bilateral interest rates, the distribution of bid-ask spreads, and the intraday flow of reserves and
supporting interest rates between pairs of banks in different positions on the trading network.
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functional-form assumptions. As we show in Section 6.3 and Appendix G, seemingly reasonable

specifications deliver very different out-of-sample predictions.

Another advantage of our approach is that the micro-structural foundations for the aggregate

reserve demand allow us to run counterfactuals. For example, experiments involving changes in

policy parameters, such as the spreads between the administered policy rates, or the regulatory

costs of leverage. Or experiments involving changes in marketstructure parameters, such as

those that regulate the trading frequencies and bargaining powers of the different types of fed

funds participants, or changes in the bank-level idiosyncratic payment-shock processes.

7 Navigational instruments for central banks

In this section we propose two diagnostic tools, or “navigational instruments” to aid monetary

policy operations: (i) the Monetary Confidence Band (MCB), and (ii) the theory-based cross-

sectional distribution of banks’ shadow cost of procuring funding in the fed funds market.

7.1 Confidence bands for monetary policy implementation

The demand for reserves is determined by the decisions of individual banks. The quantity

of reserves available to private banks is largely controlled by the Federal Reserve, but is also

influenced by transactions for which the Federal Reserve is not a counterparty, such as those

that involve private-sector bank accounts and the account that the U.S. Treasury holds at

the Federal Reserve. Whenever corporations or households pay taxes or purchase issuances of

treasury securities, reserves are transferred from private banks to the Treasury’s account at the

Federal Reserve, which from the perspective of domestic banks, amounts to an aggregate reserve-

draining supply “shock”. Conversely, reserve-augmenting supply shocks take place whenever

the Treasury makes payments to the private sector. In Appendix A.4, we report estimates of

the daily distribution of supply shocks for the period January 2011-July 2019.

A central bank that wishes to run a floor system needs to answer an elementary question:

What is the smallest quantity of reserves needed to ensure the policy rate remains within its

target range given plausible shocks to the supply of reserves? In this section we use the estimated

quantitative theory to frame our answer to this question in terms of a new policy-evaluation

instrument: the Monetary Confidence Band (MCB).

Let ι = D(Q) denote an aggregate-demand relationship between the equilibrium fed funds
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rate, ι, and the aggregate supply of reserves, Q.41 Let Zp denote the p
th percentile of the empiri-

cal distribution of reserve-draining shocks estimated in Appendix A.4. We define the “p%MCB”

as a pair of functions, (ι(Q), ι(Q)) with ι(Q) ≡ D
(
Q+ Z 100+p

2

)
and ι(Q) ≡ D

(
Q+ Z 100−p

2

)
.

The idea is that the reserve-augmenting or reserve-draining shocks induce randomness in the

supply of reserves, which in turn induces randomness in the fed funds rate. For example, for a

given beginning-of-day supply of reserves, Q, the equilibrium fed funds rate lies inside the 95%

MCB, (D(Q+ Z97.5),D(Q+ Z2.5)), with 95% probability. Figure 9 presents several examples

of MCBs.

The top-left panel in Figure 9 displays the 95% and 99% MCBs around the aggregate

demand corresponding to the baseline calibration, which is labeled “Mean (volume weighted)

rate”. There are two ways to use the MCB. First, for a given beginning-of-day supply of

reserves, we can use the MCB to estimate the probability that the EFFR will be in a certain

range. For example, for a typical day in the sample period targeted by this baseline calibration,

the beginning-of-day quantity of active excess reserves, Q, was about $900 bn, and the IOR

was 235 bps. Under these conditions, the MCB indicates that the central bank would be able

to implement any target rate in the range [IOR, IOR+25bps] with certainty. Second, for any

target range for the EFFR, the MCB yields the minimum quantity of reserves needed to meet

the target with a desired degree of confidence. For example, if the central bank wanted the

EFFR to be within the [IOR, IOR+25bps] range with 95% confidence, it would have to supply

the market at least about $670 bn in beginning-of-day active excess reserves. A 99% degree

of confidence would instead require at least about $850 bn. In terms of total reserves, a 99%

degree of confidence requires about $1.3 tn, or about 6.2% of GDP in our calibration year, 2019.

The other panels in Figure 9 report the MCBs for calibrations that differ in one parameter

from the baseline calibration. The top-right panel sets βF = 0 (the baseline has βF = 0.03).

This could be interpreted as a day in which all banks of type F withdraw from the fed funds

market. Under these conditions, the central bank would have to supply the market at least

about $700 bn beginning-of-day active excess reserves to keep the fed funds rate within the

[IOR, IOR+25bps] range with 95% confidence (about $30 bn more than in the baseline). The

bottom-left panel increases the IOR by 15 bps (from ONRRP + 10 bps in the baseline, to

ONRRP+25 bps). Notice that in this case the central bank would have to make beginning-of-

day active excess reserves very scarce—less than $500 bn—to ensure the EFFR stays above the

41In this section we omit the parameters Π as an argument of the demand function D to simplify the exposition.

28



IOR with 95% confidence. This is in contrast with the baseline calibration, which guarantees

the EFFR will be higher than the IOR with certainty for any level of reserves.

The bottom-right panel assumes an intraday payoff given by ui(a) = ιdaI{a<0} for all i, with

ιd = 0.2
800 ιw (the baseline has ui (a) = 0 for all (a, i) ∈ R × N). The parameter ιd captures the

regulatory, reputational, or other costs associated with running an intraday overdraft (defined

as a negative intraday excess reserve balance), which gained notoriety after the spikes in money-

market rates of September 2019.42 The main takeaway from this exercise is that even modest

costs of not meeting the LCR and Regulation-D thresholds on an intraday basis can cause

a significant upward shift in the demand for reserves. For example, there must be at least

$1.12 tn in active excess reserves to keep the EFFR in the [IOR, IOR+25bps] range with 99%

confidence, compared to $800 bn with no intraday cost. This maps to $2.2 tn of total reserves,

about 10.5% of GDP in 2019. From the bottom-right panel of Figure 9 we see that, with a level

of beginning-of-day active excess reserves of about $800 bn, the central bank cannot keep the

EFFR within the [IOR, IOR+25bps] range with 99% confidence (but the central bank can do

so if ιd = 0, as in the baseline of the top-left panel).

7.2 Distribution of shadow price of reserves

When analyzing commercial banks’ decisions to lend to households, corporations, or money-

market participants, the fed funds rate is usually regarded as a measure of the (opportunity)

cost of the loanable funds. The logic is that a bank that is long in reserves could lend in

the fed funds market rather than to a client, and a bank that is short may borrow in the fed

funds market and lend elsewhere. Thus, in a competitive marketstructure the cost of funds for

all banks is summarized by a single statistic—the fed funds rate. But in an over-the-counter

marketstructure where loans are negotiated bilaterally and sequentially over time as in the

actual fed funds market, each bank faces different borrowing and lending rates depending on

their own and their counterparties’ characteristics, such as their reserve balance at the time

of the trade, degree of market power (e.g., θij), ability to find counterparties (e.g., βi), and

regulatory treatment (e.g., the administered rates they earn on reserves or pay for overdrafts).

42See, e.g., Copeland et al. (2021, Section 4). With no available evidence on the value of ιd, for illustrative
purposes, here we have chosen it so that a bank that incurs intraday overdraft for a whole trading day (composed
of 800 model periods) suffers a per-dollar cost equal to 20% of the DWR. In Section 8 we use our theory augmented
with 0 < ιd to rationalize the spikes in the EFFR of September 16 and 17, 2019. In Appendix E (Section F)
we give a more detailed account of the events that took place during September 13–20, 2019 (reserve-draining
shocks, associated rate spikes, and ensuing policy interventions).
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In a dynamic OTC marketstructure like the fed funds market, each bank of type i ∈ N with

reserve balance a ∈ R at time t has its own opportunity cost, or “shadow price” of reserves,

which is summarized by
∂V i

t (a)
∂a . At any point in time the opportunity cost of loanable funds is

characterized by a whole cross-bank distribution rather than by a single number, which may

be more or less representative of the majority of banks. Below we show that in our baseline

calibration, neither the EFFR nor the distribution of traded rates are representative of the

distribution of shadow prices of reserves of the majority of fed funds participants.

While outside the scope of our model, one could envision that banks make lending decisions

to outside clients in a first stage knowing they will later participate of a fed funds trading

stage like the one we have modeled above.43 In this setup, the relevant opportunity cost of

loanable funds in the first stage for a bank of type i is given by the shadow price µi(a) ≡
∂V i

0 (a)
∂a − 1, where a is the bank’s residual balance after having made loans to outside clients

in the first stage. We summarize this heterogeneity with a cumulative distribution function

Mi(ι) ≡
∫
I{a:µi(a)≤ι}dF

i
0(a), i.e., Mi(ι) is the proportion of banks of type i ∈ N whose shadow

price of reserves at the beginning of the fed funds market trading day is lower than ι ∈ R.
The top-left panel of Figure 10 shows

M(ι) ≡
∑

i∈{F,M,S}

niMi(ι)∑
i∈{F,M,S} ni

,

along with the cumulative distribution function of all loan rates negotiated throughout the

day, denoted H (for the baseline calibration). Intuitively, H(ι) is the proportion of reserves

traded at rates below ι. The dashed vertical line labeled “EFFR” denotes the volume-weighted

average fed funds rate on all trades implied by the theory. The IOR and DWR are denoted by

solid vertical lines. Notice that H is very concentrated around the EFFR (about 60% of the

funds are traded at the EFFR), so although there is heterogeneity in negotiated loan rates, the

EFFR is quite representative of the overall distribution of traded rates. On the other hand,

neither the distribution of traded rates nor the EFFR are representative of the distribution of

shadow prices of reserves across all banks, represented by M. For example, 80% of banks have

a shadow price of reserves higher than the EFFR, but only about 10% of reserves are traded at

43This would be a natural way to incorporate a repo market into our theory, since the majority of repo
transactions are executed early in the business day. Copeland et al. (2021), for example, report that a large
fraction of interdealer repo trades are conducted between 7:00 am and 7:20 am, EST, and use this fact to argue
that when intermediating the Treasury repo market, the marginal value to a dealer bank of holding balances at
the Fed is sensitive to anticipated intraday payment stresses on these balances.
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rates higher the EFFR. The reason is that banks of type S, which constitute more than 90% of

the population of banks, account for a small share of trades, and are therefore underrepresented

in the statistics computed from actual trades, such as the EFFR and the distribution H.

The remaining three panels of Figure 10 display the beginning-of-day cumulative distribution

function of shadow prices for banks of type i, denoted Mi, and the cumulative distribution

function of all loan rates paid or received by banks of type i, denoted Hi. These panels

show that the EFFR and the distribution of traded rates, Hi, are fairly representative of the

distribution of shadow prices of reserves across banks, Mi, only for types i ∈ {F,M}, but not
for type S. This means that for about 90% of banks that participate in the fed funds market,

the EFFR does not adequately capture the shadow cost of procuring funding, and is therefore

not the relevant cost of lending in the retail and corporate loan markets.

8 Tuesday, September 17, 2019

On Tuesday September 17, 2019, the EFFR printed at 230 bps, exceeding the upper limit of

the FOMC’s target range by 5 bps.44 This event garnered the attention of market analysts

and policymakers for two reasons. First, it was the first upward deviation from target in the

11 years since the FOMC began announcing a target range for the EFFR in December 2008.

Second, the event seemed inconsistent with the widespread view that the $1.3 tn of reserves in

excess of Regulation D outstanding at the time ought to have been “ample enough” to operate

a floor system in which the Federal Reserve can implement its EFFR target without having to

actively manage the supply of reserves on a daily basis.

To frame the discussion, consider the top panel of Figure 11, which displays a data scatter-

plot with the EFFR-IOR spread on the vertical axis (in percent per annum), and the quantity of

reserves on the horizontal axis (in billions of dollars).45 The data points labeled “IOR-ONRRP

= 10 bps” are all trading days in the sample 2019/05/02–2019/09/13 (the period we used to

estimate the liquidity effect in Section A.5). The six darkest data points labeled “Sept 13-20

2019” are September 13, 16, 17, 18, 19, and 20. The dashed lines labeled “Target Upper Limit”

44The 99th percentile of the distribution of fed funds rates reached about 400 bps on September 17. Repo
markets also experienced rate spikes, e.g., the secured overnight financing rate (SOFR) printed at 243 bps on
Monday September 16 (13 bps higher than the previous business day), and exceeded 500 bps on September 17.
See Afonso et al. (2020a) and Anbil et al. (2020) for detailed accounts of these money-market events.

45As in Figure 9, the primary horizontal axis represents active excess reserves (as defined in Section 6), and
the secondary horizontal axis translates them into total reserves (as explained in Section E.2.5 of Appendix E).
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and “Target Lower Limit” are the top and bottom of the fed funds target range minus the IOR

for the period 2019/05/02–2019/09/18. On the scatterplot we have overlayed the MCB implied

by the baseline calibration of the model (this is the same MCB displayed in the top-left panel

of Figure 9, but this time with the EFFR-IOR spread on the vertical axis).

Friday, September 13 is the dark dot that sits on the demand for reserves generated by the

theory—well within the EFFR target range. Monday, September 16 is the rightmost dark dot

that sits on the upper limit of the target range for the EFFR-IOR spread, and September 17

is the uppermost dark dot, with an EFFR-IOR spread of 20 bps (5 bps higher than the spread

between the upper limit of the EFFR target range and the IOR). Wednesday, September 18

is the leftmost dark dot that sits on the upper limit of the target range for the EFFR-IOR

spread.46 The most cited culprits for the rate spikes of September 16 and 17 are two reserve-

draning events that reduced the supply of reserves by about $120 bn over two business days.47

From the top panel of Figure 11, we see that the EFFR-IOR spreads for September 16–18

lie outside the 99% MCB. This means that (under our baseline calibration) our quantitative

model cannot rationalize these observations as resulting from a “typical” daily reserve-draining

shock—even if we define a “typical” shock as one with probability larger than 1%.

These events raised several questions: In a context with $1.3 tn of excess reserves in the

banking system, how could a $120 bn reserve-draining event cause such large spikes in money-

market rates? Why didn’t banks lend some of their excess reserves to exploit the high overnight

rates? In response to these questions, during an earnings call on October 15, 2019, Jamie Dimon

(Chairman and CEO of JPMorgan Chase) famously alluded to internal reserve management

practices and a “red line” below which the bank’s reserves ought not to fall to ensure compliance

with liquidity regulations.48

To explore this hypothesis, the middle panel of Figure 11 overlays, on the same data scat-

46September 19 and September 20 are the dark dots with an EFFR-IOR spread of 10 bps.
47The first was a quarterly corporate tax payment transferred from corporations’ bank and money market

mutual fund accounts to the Treasury’s account. The second, a $54 bn settlement of Treasury debt paid by
primary dealers into the Treasury’s account on September 16. In Section F we give a more detailed account
of the reserve-draining shocks, associated rate spikes, and ensuing policy interventions that took place during
September 13–20, 2019. Table 2 summarizes the main facts.

48See the last excerpt from the JPMorgan Chase earnings call of October 15, 2019 quoted in Appendix F
(Section F.1). There is other evidence that the introduction of post-GFC liquidity regulations and associated
supervisory programs have changed banks’ liquidity risk management practices. Afonso et al. (2020a), for
example, point to a recent survey conducted by the Federal Reserve in which the majority of bank respondents
identified “meeting routine intraday payments flows and satisfying internal liquidity stress metrics as the main
drivers of their demand for reserves”. See, e.g., the August 2019 Senior Financial Officer Survey, https://www.
federalreserve.gov/data/sfos/sfos.htm.
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terplot of the top panel, the MCB implied by the baseline calibration of the model, but with

ui(a) = ιdaI{a<0} for all i, where ιd = x
800 ιw, and x = 0.1.49 The parameter ιd stands in for a

bank’s perceived penalty from going below Dimon’s “red line” (e.g., associated to the possible

loss of reputation with regulatory supervisors for failing to maintain prudent liquidity buffers,

as suggested by Copeland et al. (2021)). The middle panel of Figure 11 shows that a shadow

cost of intraday overdraft equal to 10% of the DWR (e.g., caused by precautionary reserve

internal management practices designed to ensure compliance with liquidity regulations), is

enough for the model to rationalize the September 16-18 EFFR-IOR observations as resulting

from “typical” daily reserve-draining shocks (in the sense of being within the 99% MCB). The

bottom panel of Figure 11 corresponds to a day with x = 0 (as in the baseline calibration),

but with βF = 0, which can be interpreted as a trading day in which the small number of

most active banks choose not to participate of the fed funds trading activity. The result is a

steepening of the demand for reserves that also rationalizes the September 16-18 EFFR-IOR

observations (again, in the sense of being within the 99% MCB).

9 Conclusion

We have taken several steps toward developing over-the-counter models of the fed funds market

into serviceable tools to guide monetary policy implementation. Our framework incorporates

the main microstructure ingredients of the fed funds market, accounts for the salient institu-

tional features, and includes the collection of policy instruments and regulations that shape

participants’ demands for reserves. The model also incorporates the large degree of hetero-

geneity among participants across several dimensions, such as market power in bilateral loans,

frequency and size distribution of payment shocks, and degree of centrality in market-making.

We documented a comprehensive set of novel marketwide and micro-level observations that

describe the market dynamics, and showed that our quantitative model is flexible enough to

match these observations. We used the quantitative theory to deliver structural estimates of

the aggregate demand for reserves, and developed two diagnostic tools to gauge the central

bank’s ability to track its fed funds target, and the heterogeneous incidence of policy actions

on the shadow cost of funding across banks.

While we think we have made significant progress, we have also touched upon some questions

49A value of x = 0.1 implies that a bank that incurs intraday overdraft for a whole trading day, bears a
per-dollar cost equal to 10% of the DWR.

33



and ideas that would be worth exploring in future work. We have allowed for heterogeneity

in contact rates across bank types to capture the core-periphery structure of the fed funds

market, but we have treated these contact rates as exogenous. While this may be a reasonable

assumption during periods when regulation and the deeper marketstructure parameters are

relatively constant, it is not difficult to imagine settings or questions where it would be desirable

to endogenize search intensity (e.g., perhaps along the lines of Farboodi et al. (2023)). A

similar point can be made about the beginning-of-day distributions of reserves, which for many

applications would be best derived from an explicit portfolio problem of banks prior to the

fed-funds trading stage that we have focused on.

Finally, a monetary-policy operating framework consists of two parts: an operating target

(e.g., the fed funds rate), and policy instruments (e.g., standing facilities, open-market opera-

tions). Monetary models in the macro tradition focus on the macroeconomic effects of choosing

different values (or rules) for the operating target, and leave operational implementation con-

siderations outside the scope of their analysis. In this paper we have instead focused on the

operational side of the monetary policymaking process, and have left macro considerations out-

side the scope of our analysis. We think the macroeconomic implications of the microstructure

of interbank lending and payments is a promising avenue of research (examples of work along

these lines include Arce et al. (2020), Bianchi and Bigio (2022), De Fiore et al. (2018), Li and

Li (2021), and Piazzesi and Schneider (2018)).
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F (model) F (data)

M (model) M (data)

S (model) S (data)

Figure 4: Cumulative distributions of borrowing and lending rates by bank type.

Notes: For each loan rate, the curve labeled “borrowing rate” (“lending rate”) gives the fraction of total reserves

borrowed (lent) by banks of the type indicated in the panel heading, at rates lower than that rate. The panels on the left

are for the model calibrated as in Table 1. The panels on the right are from data, for every trading day in the period

2019/06/06–2019/07/31. Rates are in percent per annum.
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F (model) F (data)

M (model) M (data)

S (model) S (data)

Figure 5: Cumulative distributions of loan rates between pairs of bank types.

Notes: For each loan rate, the curve labeled “i” (for i ∈ {F,M, S}) gives the fraction of total reserves borrowed by banks

of type i from the bank types indicated in the panel heading, at rates lower than that rate. The panels on the left are for

the model calibrated as in Table 1. The panels on the right are from data, for every trading day in the period

2019/06/06–2019/07/31. Rates are in percent per annum.
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Baseline calibration

Intraday overdraft penalty (10% of DWR)

Intraday overdraft penalty (20% of DWR)

Figure 11: The events of September 13–20, 2019.

Notes: Each panel shows an MCB with the EFFR-IOR spread on the vertical axis (in percent per annum). The MCBs

assume ui(a) = ιdaI{a<0} for all i, with ιd = x
800

ιw. All parameters are as in the baseline calibration unless specified

otherwise. The top panel corresponds to the baseline calibration. The middle panel has x = 0.1. The bottom panel has

βF = 0. The data points labeled “IOR-ONRRP=10 bps” are for the period 2019/05/02–2019/09/13. The dashed lines

labeled “Target Upper Limit” and “Target Lower Limit” are the top and bottom of the fed funds target range minus the

IOR for the period 2019/05/02–2019/09/18.
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A Facts

In this section we document the fed funds market facts that will guide the quantitative imple-

mentation of the theory. Section A.1 presents the joint distribution of two bank-level measures

of fed funds trading activity: a bank’s participation rate in marketwide trade volume, and a

reallocation index that quantifies the degree to which a bank is a net borrower or lender of

funds. Section A.2 reports estimates of the frequency and size distribution of micro-level in-

traday payments between banks. Section A.3 presents estimates of a typical beginning-of-day

cross-sectional distribution of reserve balances. Section A.4 reports estimates of the distribution

of aggregate daily reserve-draining shocks for the fed funds market since the GFC of 2007-2008.

Section A.5 presents empirical estimates of the slope of the aggregate demand for reserve bal-

ances. Finally, Section A.6 describes an empirical interpolation procedure to map changes in

the aggregate quantity of reserves into changes in the cross-sectional distributions of reserves

that is consistent with available observations, and will be used in our quantitative analysis.

Since some of the regulations introduced in the wake of the GFC are likely to have affected

trading incentives in the fed funds market, we report facts separately for the period before,

and after these regulations had been implemented.50 In this section we use the years 2006 and

2019 as typical pre- and post-GFC-regulation periods, respectively. However, since some of our

quantitative exercises will require sample variation in the aggregate quantity of reserves while

keeping regulation constant, we will also report facts for the years 2014 and 2017.51

We use transaction data from the Fedwire Funds Service (Fedwire). Our typical Fedwire

participant, which we call a bank, corresponds to a bank holding company. Our sample consists

of 754 Fedwire participants for the year 2006, 404 for the year 2014, 395 for the year 2017,

50Some of these regulations increased the shadow value of liquid assets (including reserves), or introduced
leverage constraints that increased the shadow cost of borrowing funds (including overnight fed funds purchases).
Two prominent examples of such regulations are the Liquidity Coverage Ratio (LCR) and the Supplementary
Leverage Ratio (SLR) requirements. We discuss these regulations in Appendix C.

51 The LCR was phased in between January 2015 and January 2017. Non-foreign bank organizations began
reporting SLR to U.S. regulators in July of 2013, SLR disclosures become mandatory in January of 2015, and SLR
compliance became mandatory in January of 2018. We regard 2006 and 2014 as pre-GFC-regulation years, and
the 2017 and 2019 as post-GFC-regulation years. In terms of sample variability in the quantity of outstanding
reserves in the system, the years 2006, 2014, 2017, and 2019 are natural benchmarks for the following reasons.
The year 2006 is a typical pre-GFC period with excess reserves close to zero, and the year 2014 is a post-GFC
but pre-GFC-regulation period with very high level of excess reserves (close to the pre-2020 historical peak). The
year 2017 is a post-GFC-regulation period with very high level of excess reserves (again, close to the pre-2020
historical peak), while the year 2019 has the lowest level of excess reserves in the post-GFC-regulation era.
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and 412 for the year 2019.52 We use a modified version of the Furfine algorithm to identify

overnight loans of reserves from the universe of Fedwire transfers; and we regard the remaining

transactions as payments (presumably unrelated to loan issuance or repayment).53 We focus

on transactions that occur between 9:00 am and 6:30 pm EST.

A.1 Fed funds trading network

Let B denote the collection of banks in our sample in a given year, and Y denote the collection

of all trading periods in that year.54 Let υend be the dollar value of all loans extended by bank

n ∈ B in period d ∈ Y, and use υd ≡
∑

n∈B υ
e
nd to denote the dollar value of all the loans traded

in period d. Also, let υrnd be the dollar value of all loans received by bank n ∈ B in period

d ∈ Y. For each bank n and period d, define

Pnd ≡
υend + υrnd

2υd

Rnd ≡
υend − υrnd
υend + υrnd

.

We refer to Pnd as bank n’s participation rate during period d, since it measures the share of the

total period-d trade volume that is accounted for by bank n’s trading activity. For any given

bank n in period d, Pnd ∈ [0, 1/2], with Pnd = 0 corresponding to a bank that did not trade,

and Pnd = 1/2 corresponding to a bank that acted as a counterparty in every trade. In general,

if a bank n participated as a counterparty in x% of the dollar value of all the loans traded in

period d, then 2Pnd = x/100. We refer to Rnd as bank n’s reallocation index during period d,

since it is an index of the degree to which a bank is a net borrower or lender of funds. For any

given bank n in period d, Rnd ∈ [−1, 1], with Rnd = −1 corresponding to a bank that only

borrowed, Rnd = 1 corresponding to a bank that only lent, and Rnd = 0 corresponding to a

bank whose trading activity in period d consisted of pure intermediation. A typical bank n will

have either Rnd ∈ (−1, 0), meaning it is a net borrower that engaged in some intermediation,

52In Appendix E (Section E.1.2) we explain our sample selection criteria, and how we assigned Fedwire trans-
actions to bank holding companies.

53The algorithm, which is based on Furfine (1999), was made available to us by the Money Market Analysis
Section at the Monetary Affairs Division of the Federal Reserve Board.

54In our empirical work, a trading period will correspond either to a trading day, or to a typical 14-day
(reserve) maintenance period used to calculate a bank’s reserve requirement. Our convention is to use Y to
denote a generic set of trading periods in a year, D to denote the set of trading days in a year, and H to denote
the set of maintenance periods in a year. See Section C.1 in Appendix C for institutional details on reserve
requirements and maintenance periods.
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or Rnd ∈ (0, 1), meaning it is a net lender that engaged in some intermediation.55 To provide a

parsimonious description of the typical trading activity for each bank, we construct a bank-level

participation rate and reallocation index averaged over all trading periods in a given year, i.e.,

Pn =
1

NY

∑
d∈Y

Pnd

Rn =
1

NY

∑
d∈Y

Rnd,

where NY ≡
∑

d∈Y I{d∈Y} is the number of trading periods in the year, and each trading period

corresponds to one of bank n’s (reserve) maintenance periods during the year.56

We use the bank-level participation rate to sort each bank into one of three groups, denoted

S, M , and F , depending on whether the bank’s participation rate is low, medium, or high,

respectively.57 Figure 12 shows the empirical cumulative distribution function (ECDF) of par-

ticipation rates for the banks that are in our sample in the year 2006 (the circles) and the banks

that are in our sample in the year 2019 (the crosses). Specifically, in each year we label the 4

banks with highest participation rate as, F ; the banks outside the top 4 that have participation

rate at least as large as 0.5%, as M ; and all other banks, as S. Individually, each of the top

four most active banks that compose group F participated as a counterparty roughly in at

least 10% of the total volume of loans traded in an average reserve maintenance period. And

together, these four banks accounted for a large share of the aggregate trade volume: 45.6% in

2006, and 43.1% in 2019. In contrast, the large majority of banks, which belong to group S,

have extremely low participation rates. We regard this large skewness in loan trading activity

across banks as a key empirical regularity of the fed funds market structure.

Among the institutions assigned to group S based on the ECDF there is a subgroup of non-

bank Fedwire participants typically referred to as Government Sponsored Enterprises (GSEs),

which includes the Federal Home Loan Banks, the Federal National Mortgage Association

(Fannie Mae), and the Federal Home Loan Mortgage Corporation (Freddie Mac). Even though

on the basis of their trading activity GSEs would belong in group S, in what follows we consider

them a different type of participant because their business model and regulatory treatment make

55Notice that Xnd ≡ 1− |Rnd| is a measure of the proportion of the total volume of funds traded by bank n in
period d that the bank intermediated during that period, and (υe

nd + υr
nd)Xnd is what Afonso and Lagos (2015b)

call excess funds reallocation (a measure of the volume of funds that an individual bank trades over and above
what is required to accommodate its daily net trade).

56See Appendix C (Section C.1) for institutional information on maintenance periods.
57The pneumonic is that banks of type S, M , and F , are slow, medium, and fast, at contacting counterparties.
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their payoffs from holding reserves different from the rest of the participating institutions.58 To

offer a parsimonious representation of the data, we will sort institutions into four types, i.e.,

N = {F,M, S,G}. Types F , M , and S correspond to the F , M , and S groups defined above,

but excluding GSEs, and type G is composed exclusively of GSEs.59

Figure 2 shows the location of each bank type i ∈ {F,M, S,G} in the coordinate axes

defined by the reallocation index, Ri, and the participation rate, Pi, in the years 2006, 2014,

2017, and 2019. The figure shows an empirical trading network that conveys information on

the distribution of trading activity across bank types, the flows of reserves implied by the fed

funds lending among the four types of banks, and the average interest rates on the underlying

loans. The participation, reallocation, and loans measures are all computed at the bank-type

level.60 Each node represents the set of banks assigned to a particular type, labeled accordingly

as F , M , S, or G. The arrows from one node to another represent loans extended from banks of

that type to the other. The position of each node indicates how active the corresponding bank

type is in the fed funds market and whether banks of that type are, on average, net borrowers,

net lenders, or intermediaries. The size of each node is proportional to the volume of trade

between banks of the that type. The width of each arrow is proportional to the volume of trade

between the bank types connected by the arrow. The colors of the arrows and nodes are: light

blue, dark blue, light red, or dark red, if the volume-weighted average interest rate on the loans

between the two types of banks, expressed as a spread over the EFFR, falls in the first, second,

third, or fourth quartile, respectively.61

While specifics vary somewhat across years, several stable trading patterns emerge from

58In contrast to banks, GSEs have very predictable cash flows (so payment shocks are not relevant for their day-
to-day trading motives), and for most of our sample they did not earn interest on reserves—although nowadays
they may lend reserves in the Federal Reserve’s overnight reverse repo (ONRRP) facility.

59Our sample for 2006 consists of 4 banks of type F , 22 banks of type M , 716 banks of type S, and 12 GSEs.
Our sample for 2019 consists of 4 banks of type F , 18 banks of type M , 379 banks of type S, and 11 GSEs. If
we apply the same classification criteria for the years 2014 and 2017, we find that our sample for 2014 consists
of 4 banks of type F , 15 banks of type M , 373 banks of type S, and 12 GSEs, while our sample for 2017 consists
of 4 banks of type F , 18 banks of type M , 362 banks of type S, and 11 GSEs.

60The participation rate for each bank type i ∈ {F,M, S,G} on a given year was calculated as follows. For
each maintenance period, we summed the participation rates of all the banks of a given type, and then averaged
across all maintenance periods in the year. The reallocation index for each bank type is calculated as follows.
For each maintenance period, we summed all the loans sent, and all the loans received, by banks of a given type,
and used these aggregate measures of loans sent and received by the type to calculate the reallocation index
for that bank type in that given maintenance period, and then averaged across all maintenance periods in the
year. We followed the same aggregation procedure to calculate volume-weighted interest rates across groups. See
Appendix E (Section E.2.2) for details.

61Arrow widths and node sizes are defined relative to trades within a year; thus not comparable across years.
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Figure 2. Banks of type F account for about 1/2 of aggregate trade volume (i.e., PF ≈ 1/2)

and intermediate a large share of what they trade, with a tendency to act as net lenders. Banks

of type M and banks of type S tend to be net borrowers; the former account for more than

1/4 of aggregate trade volume, and the latter much less (e.g., less than a quarter in 2006, and

less than 1/8 in later years). GSEs account for about a 1/8 of aggregate trade volume, and

participate almost exclusively as lenders.

A.2 Interbank payments

In the previous section we analyzed transfers of reserves associated with overnight borrowing

and lending between banks. In this section we focus on transfers that are unrelated to loan

issuance or repayment. We regard these transfers as payments, which may reflect transactions

originated by the banks’ clientele, or by sections of the bank other than the ones in charge of

actively managing reserve balances.

We identify as payments all Fedwire transfers that are not flagged as loans or repayments by

the Furfine algorithm. These payments are likely to have a predictable component, but also a

random component, which we refer to as payment shocks. Since these components affect trading

incentives differently in the theory, we construct a measure of the predictable component, and

estimate a process for the payment shocks of a typical bank of type F , M , or S.62 As in the

theory, we model payment shocks as a compound process with a parameter that determines

the frequency with which a bank of type i receives a payment shock (i.e., λi in the theory),

and a conditional probability distribution for the payment size, which is allowed to depend on

the types of the banks sending and receiving the payment (i.e., Gij in the theory). Next, we

describe our procedure to estimate the process for high-frequency interbank payment shocks.

Let T denote the set of all one-second time intervals in a trading day d ∈ D. For every

pair of banks m,n ∈ B, let smn (t, d) ∈ R denote the dollar value of all payments from bank

m to bank n in the one-second time interval t ∈ T during trading day d ∈ D.63 Let smn

denote the value of the average payment between banks m and n in a given year, and define

s̃mn (t, d) ≡ smn (t, d) − smn for all (t, d) ∈ T × D. In this way, we decompose every high-

frequency payment smn (t, d) between a pair of banks into a predictable component, smn, and a

payment shock, s̃mn (t, d). For each pair of bank types i, j ∈ N, we pool all payment shocks to

62The business model of a GSE makes its reserve balances unlikely to be subject to unexpected payment shocks
of significant magnitude, so we regard all GSE payments as predictable.

63The bilateral payment credits bank n’s account if 0 < smn (t, d), and bank m’s account if smn (t, d) < 0.
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form the data set

S̃ij = {s̃mn (t, d) : m ∈ Bi, n ∈ Bj for all (t, d) ∈ T × D} ,

where Bi is the set of banks of type i ∈ N. We then use the data set S̃ij to estimate a

Gaussian kernel density that we regard as the size distribution of payment shocks between each

pair of bank types i and j, i.e., the empirical counterpart of the probability density function

corresponding to Gij in the theory.64 Figures 13 and 14 display the empirical histogram along

with the corresponding estimated kernel of payment shocks for each pair of bank types using

data from the years 2006, and 2019, respectively.

For each bank type i ∈ N we estimate the empirical counterpart of λi in our theory, as

the average number of payment shocks that a typical bank of type i receives in a one-second

time interval, t ∈ T , during a trading day, d, in year Y. Let fm (t, d) denote the number of

payment shocks between a bank m ∈ B and any other bank during the one-second time interval

t in trading day d, i.e., fm (t, d) =
∑

n∈B\{m} I{smn(t,d)̸=0}. The corresponding average across

seconds in a trading day, and trading days in the year is f̄m = 1
ND

∑
d∈D

[
1

NT

∑
t∈T fm (t, d)

]
,

where NT ≡
∑

t∈T I{t∈T } is the number of seconds in a trading day, and ND ≡
∑

d∈D I{d∈D}
is the number of trading days in a year. We use these bank-level empirical frequencies of

payment shocks to estimate the probability that an average bank of type i ∈ {F,M, S} receives

a payment shock in a typical one-second time period, i.e., we set λi = 1
Ni

∑
m∈Bi

f̄m, where

Ni ≡
∑

m∈B I{m∈Bi} denotes the number of banks of type i in our sample. The estimates for

{λi}i∈{F,M,S} for the years 2019 and 2006 are reported in Table 1 and Table 3, respectively.65

A.3 Distribution of reserve balances

In this section we estimate beginning-of-day distributions of reserve balances (for each bank

type) that are the empirical counterparts of the beginning-of-day distributions in the theory,

i.e., {F i
0}. Our calculations begin with a primitive bank-level quantity of reserves, and involve

constructing a notion of unencumbered excess reserves by subtracting regulatory reserve re-

quirements, and netting predictable Fedwire transfers (both, outright payments, and fed funds

repayments).

For each bank in our sample, the Monetary Policy Operations and Analysis (MPOA) section

at the Monetary Affairs Division at the Federal Reserve Board calculates the daily reserve

64See Appendix E (Section E.2.3) estimation details.
65We set λG = 0 for every year, for the reasons explained in footnote 62.
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balance at 6:30 pm. We device an algorithm that uses this end-of-day balance to calculate the

“basic” beginning-of-day balance at 9:00 am on the following day for each bank. Specifically,

the algorithm starts with the bank’s end-of-day balance for day d−1 provided by MPOA, adds

all fed funds repayments received during day d, and subtracts all fed funds repayments sent

during day d that correspond to fed funds loans originated during day d−1.66 For each bank m,

and each reserve maintenance period, h, that belongs to the set H of all maintenance periods

in a given year, we calculate the average beginning-of-day balance across trading days in the

maintenance period, which we denote am (h).67 We make two additional adjustments to this

average “basic” measure of beginning-of-day balance at the bank level.

The first adjustment consists of subtracting the quantity of required reserves, i.e., the min-

imum level of reserves that the bank must hold during the maintenance period in order to

comply with Regulation D and the minimum Liquidity Coverage Ratio requirement (LCR).68

Specifically, for each individual bank m, we compute the average beginning-of-day excess re-

serves during a maintenance period h, as xm (h) = am (h)− a
¯
D
m (h)− a

¯
L
m (h), where a

¯
D
m (h) and

a
¯
L
m (h) denote the Regulation D and LCR reserve requirements, respectively.69

66Repayments are identified using the send-receive matching from the Furfine algorithm. The rationale for
netting the predictable transfers, which include the repayments of fed funds borrowed in the previous trading
day, as well as the predictable component of payments (discussed below), is that through the lens of our theory,
the beginning-of-day balance that is relevant for a bank’s incentives to trade reserves during the day ought to
be net of anticipated transfers that the bank knows will receive or have to make during the trading day. The
beginning-of-day-d balance for each GSE is constructed by taking the GSE’s end-of-day balance for day d − 1
provided by MPOA, and netting all repayments of fed funds loans traded during day d − 1 (between the GSE
and any other bank that meets the sample selection criteria described in Section E.1.2 of Appendix E), as well
as payments sent or received during trading day d (and that involve any bank, not only those that meet the
sample selection criteria described in Section E.1.2 of Appendix E). The rationale for netting all transfers that
will occur during day d to obtain the GSE’s balance at the beginning of day d is that a GSE’s business model
generates very predictable cash flows, so through the lens of our theory, we regard the GSE as being able to
predict all its intraday Fedwire transfers at the beginning of the trading day.

67What motivates our focus on beginning-of-day balances averaged over all trading days in a reserve main-
tenance period is the fact that the reserve requirement regulations that influence banks’ payoffs from holding
reserves must be met not on a daily basis, but on average over all days in the maintenance period. See Section
C.1 in Appendix C for details on the reserve requirements stipulated by Regulation D.

68Appendix C gives an overview of the relevant regulation. Our motivation for estimating reserves net of
regulatory requirements is that this notion of excess reserves will play an important role in our quantitative
theoretical exercises, e.g., it will be a key input to determine whether the central bank is implementing a
monetary policy framework with “ample reserves” or a “corridor system”. For this reason, in the quantitative
implementation of the theory we specify banks’ end-of-day payoffs in terms of excess reserves.

69The bank-level data for Regulation D requirements are provided by MPOA. The LCR regulation requires a
bank to maintain (typically on a daily basis) a quantity of High Quality Liquid Assets (HQLA) at least as large as
a measure of total net cash outflows in a 30-day standardized stress scenario. Specifically, if we let Hm (d) denote
the quantity of qualifying HQLA held by bank m in a trading period d, and Lm (d) denote the corresponding
measure of outflows in the stress scenario, the LCR regulation requires Lm (d) ≤ Hm (d). Both these quantities
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The second adjustment to the average basic measure of a bank’s beginning-of-day balance

consists of subtracting the predictable component of payments. Specifically, for each bank m we

compute ŝm =
∑

n∈B ŝmn, where ŝmn ≡
∑

d∈D
1

ND

∑
t∈T smn (t, d) is the average (over the set D

of ND trading days in the year) net daily payment from bank m to bank n. Then, for each bank

m and reserve maintenance period h, we construct qm (h) = xm (h) − ŝm, which is a bank’s

average (across days in the maintenance period) beginning-of-day measure of unencumbered

reserves.70

For each bank type i ∈ N, define

Qi = {qm (h) : m ∈ Bi for all h ∈ H} .

We pool the data in the set Qi and use it to estimate a Gaussian kernel density that we regard

as the empirical counterpart of the beginning-of-day distribution of reserves, F i
0, in the theory.71

Figures 15-18 show the kernel density estimates of the distributions of reserves for each

bank type i ∈ N for the years 2006, 2014, 2017, and 2019, respectively. In every year, the

distribution of unencumbered reserves across banks of type S is fairly concentrated around

zero. In 2006 (a typical year before the GFC), about 60% of bank-period observations for type

S have beginning-of-day reserves close to zero, with dispersion in both directions. In 2014, 2017,

and 2019 (the post-GFC period with very high level of total reserves), the pattern for banks of

type S is similar: about 60% of bank-period observations have beginning-of-day reserves close

to zero, with some bank-period observations with positive reserves, and almost no bank-period

observations with negative reserves. The distributions of beginning-of-day reserves for banks of

type F and M , on the other hand, exhibit significant dispersion. For type M there are virtually

are publicly available for each bank at a quarterly frequency (see Section E.1.3 in Appendix E for details). The
set of qualifying HQLA includes reserves in excess of Regulation D, as well as securities issued or guaranteed
by the U.S. Treasury (and also other securities, but subject to caps and haircuts). The fact that the LCR
regulation allows banks to meet the requirement with assets other than reserves presents a challenge when trying
to identify the quantity of reserves that bank m treats as “required” to satisfy the LCR constraint in period
d, i.e., a

¯
L
m (d). Our strategy to tackle this identification problem is to set a

¯
L
m (d) = max (0,Lm (d)−Am (d)),

where Am (d) ≡ Hm (d) − max
(
0, am (d)− a

¯
D
m (d)

)
is the quantity of qualifying HQLA in excess of (i.e., other

than) reserves net of the Regulation D requirement. Notice that the resulting measure of excess reserves, xm (d),
selects the largest level of excess reserves net of the Regulation D requirement that is consistent with the LCR
constraint. (Section C.2.1 in Appendix C discusses our strategy to identify the quantity of required reserves
induced by the LCR regulation.) For banks that are not subject to LCR regulation, we set a

¯
L
m (d) = 0. Since

GSEs are not subject to Regulation D or LCR regulation, we set a
¯
D
m (d) = a

¯
L
m (d) = 0 for m ∈ BG.

70Unless otherwise specified, whenever we refer to “beginning-of-day reserves” we are alluding to unencumbered
reserves, i.e., the reserves in excess of Regulation D and LCR requirements, and net of predictable Fedwire
transfers, computed as described in Appendix E (Section E.2.1).

71See Appendix E (Section E.2.3) estimation details.
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no bank-period observations with negative reserves for the years 2014, 2017, and 2019, and the

dispersion over positive holdings is sizeable. For type F there is significant dispersion of reserves

around zero in the years 2017 and 2019, largely due to the predictable component of payments.

A.4 Reserve-draining shocks

The aggregate demand for reserves is determined by the decisions of individual banks, who

demand reserve balances as payment instruments, as safe short-term investment vehicles, and

to meet regulatory requirements. The aggregate supply of reserves, on the other hand, is

largely determined by the central bank’s actions. But the central bank does not have complete

control over the supply of reserves: The supply of reserves available to private banks also

depends on transactions for which the Federal Reserve is not a counterparty, such as those

that involve private-sector bank accounts and the account that the U.S. Treasury holds at

the Federal Reserve. We will term the changes in the aggregate quantity of reserves resulting

from the actions of entities other than the Federal Reserve, exogenous supply shocks. For

example, whenever corporations or households pay taxes or purchase issuances of treasury

securities, reserves are transferred from private banks to the Treasury’s account at the Federal

Reserve, which from the perspective of domestic banks, amounts to an aggregate contractionary

(reserve-draining) supply shock. Conversely, expansionary (reserve-augmenting) supply shocks

take place whenever the Treasury makes payments to the private sector (e.g., when redeeming

outstanding debt instruments).72 In this section we use daily data for the 2011-2019 sample

period to estimate the size distribution of exogenous shocks to the supply of reserves.

Reserves were relatively scarce before 2007, and the Open Market Trading Desk (“the Desk”)

at the Federal Reserve Bank of New York (FRB-NY) routinely conducted open-market opera-

tions to offset the effects of exogenous supply shocks on the fed funds rate. These systematic

policy responses make it challenging to identify exogenous shifts in the supply of reserves in

the pre-2007 period. The sharp increase in excess reserves and the very low fed funds rate

target that followed the GFC made it unnecessary for the Desk to actively respond to daily

market conditions in order to implement the target. In fact, post-2008, the Federal Reserve

interventions that affected the stock of reserves were driven by longer-term objectives (e.g.,

72Three other common sources of reserve-draining or reserve-augmenting shocks are: foreign official reverse
repurchase agreements, changes in the quantity of currency in circulation (which imply swaps of currency for
reserves or vice versa), and Federal Reserve “float” that is caused by the mismatch in timing between the debiting
of reserves from a paying bank and the crediting of reserves to a receiving bank.
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implementation of quantitative easing policies) rather than by day-to-day managing of the fed

funds rate in response to high-frequency exogenous supply shocks to the quantity of reserves.

Thus, in the post-GFC era we can identify exogenous supply shocks using high-frequency (e.g.,

daily) changes in the aggregate quantity of reserves held by financial institutions. The middle

panel of Figure 19 shows that the variation in total reserves has been much larger since 2008,

which is in line with our identifying assumption that the Desk did not react to exogenous supply

shocks to the stock of reserves in the post-GFC period.

We estimate the distribution of reserve-draining shocks as follows. For each trading day d

in the set D of all trading days in a given year, let ad denote the aggregate quantity of reserves

held by all banks at the end of day d, and define the corresponding 40-day (two-sided) moving

average, ad ≡ 1
41

∑20
k=−20 ad+k.

73 The top panel of Figure 19 shows the time series {ad,ad}
between the years 2001 and 2019. The middle panel of Figure 19 shows the deviations between

total reserves and its own moving average, i.e., {zd}, with zd ≡ ad − ad.
74 In time periods

when the Federal Reserve does not react systematically to exogenous shocks to the supply of

reserves, {zd} can be interpreted as a measure of the supply shocks themselves. Define the

set Z = {zd : d ∈ D}, where D denotes the collection of trading days during the sample period

January 2011-July 2019. We use the pooled data in the set Z to estimate a Gaussian kernel

density for the distribution of shocks to the aggregate quantity of reserves.75 The bottom panel

of Figure 19 displays the empirical histogram based on the daily observations in Z, along with

its kernel estimate. The figure also depicts the intervals that contain the daily realization of

the “aggregate supply shock” with 99% or 95% probabilities, i.e., [−$279 bn, $130 bn], and

[−$115 bn, $99 bn], respectively.

To assess the plausibility of our estimates, consider Anbil et al. (2020), who in the context

of the market events of September 16-17, 2019, estimate a reserve-draining shock of $120 bn,

and remark “it is not uncommon for reserves to fall about $100 bn over a day or two” (p. 5).

Our estimates imply that the probability of a reserve-draining shock of $110 bn or larger is

about 2.5%.

73For the purpose of these calculations we include all banks, not only those that meet the sample selection
criteria based on fed funds trading activity described in Appendix E.1.2.

74Since the daily time series cannot be made public, the top and middle panels of Figure 19 show the weekly
versions. But we use the daily time series for the purposes of the kernel estimation discussed below.

75See Appendix E (Section E.2.3) estimation details.
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A.5 Liquidity effect

In this section we present empirical estimates of the change in the fed funds rate in response to

an exogenous change in the aggregate quantity of reserves—the so-called liquidity effect.76 It is

customary to think of the fed funds rate as resulting from the intersection of a vertical supply

and a downward sloping demand for reserves (e.g., as in Poole (1968)). Framed in this way, the

slope of the demand for reserves is the key determinant of the liquidity effect. Traditionally the

main challenge for estimation has been to identify exogenous shifts in the supply of reserves.77

In an influential paper, Hamilton (1997) proposed a proxy for exogenous shifts in the aggre-

gate quantity of reserves, and Carpenter and Demiralp (2006) subsequently proposed another.78

The range of estimates obtained by Hamilton (1997) (for the period 1989/04/06–1991/11/27)

and Carpenter and Demiralp (2006) (for the period 1989/05/19–2003/06/27) is similar: the

estimated increase in the fed funds rate in response to an unexpected, temporary (one-day) $1

bn aggregate reserve-draining shock, ranges between 1 and 2 basis points (and can be as high

as 3 basis points on “settlement Wednesdays”).79

To estimate the liquidity effect for the post-GFC sample period with large excess reserves

that were not actively managed by the central bank, we run the following regression:

st − st−1 = γ0 + γ(Qt −Qt−1) + εt, (7)

76See Carpenter and Demiralp (2006) for a review, and Afonso et al. (2022) for more recent references.
77This was the main estimation challenge for the pre-GFC regime in which the Desk was actively conducting

open-market operations reacting to market conditions in order to manage the fed funds rate. The challenges are
different for the post-GFC era (e.g., until mid September 2019), when reserves were not actively managed by
the Desk. For example, within the post-GFC period when the Federal Reserve began managing the fed funds
rate by setting administered rates rather than the quantity of reserves, our theory prescribes controlling for the
spreads between the administered rates (see Section 6.2).

78Hamilton (1997) proposed the deviations between the actual end-of-day balance of the Treasury’s Fed ac-
count and an empirical forecast of the end-of-day balance of the Treasury’s Fed account as a proxy for unexpected
changes in the quantity of reserves. Carpenter and Demiralp (2006) build on the work of Hamilton (1997) by
replacing his measure of unexpected changes in the Treasury’s Fed account with a more accurate and compre-
hensive measure: the difference between the realized quantity of reserves on a given day, and the forecast for
the quantity of reserves for that day that is used by the Desk (or the FRB) to perform its daily accommodative
open-market operations. Relative to Hamilton’s, the Carpenter-Demiralp measure of unexpected changes in
reserves is more comprehensive because it contemplates all possible sources of variation in the supply of reserves
(not only fluctuations in the Treasury’s Fed account), and it is more accurate because, by definition, these daily
“forecast misses” are changes in the quantity of reserves that the Desk did not accommodate.

79Since this range of estimates was obtained from time series during a period in which reserves in excess of
Regulation D were very close to zero, and post-GFC regulation had not been introduced, we will use it in our
historical calibration exercise (Appendix H) to discipline the parameters that determine the magnitude of the
liquidity effect in our quantitative theory locally, i.e., around the equilibrium point that results when excess
reserves are close to zero.
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where st denotes the spread between the effective fed funds rate (EFFR, published by the FRB-

NY) and the administered interest rate on reserves (IOR) on day t, Qt denotes the aggregate

quantity of reserves at the end of day t (provided by the Monetary Affairs Division at the

Federal Reserve Board), εt is an error term, and γ is the coefficient of interest.

We estimate regression (7) at daily frequency for the sample period 2019/05/02–2019/09/13.

We base our estimation on the year 2019 because it is the baseline year we will use to calibrate

our theory in Section 4. Our identifying assumption is that the daily changes in the aggregate

quantity of reserves can be regarded as exogenous because, as discussed in Appendix A.4, the

Federal Reserve was not actively managing the quantity of reserves in response to developments

in the fed funds market during the post-GFC sample periods that we consider for this regres-

sion.80 The estimate is γ = −0.0119 (significant at the 1% level), with 95% confidence interval

[−0.0187,−0.0052]. Since the independent variable is measured in billions of dollars and the

dependent variable in basis points, these estimates mean that a $1 bn increase in the quantity

of reserves decreases the EFFR-IOR spread by 0.01 basis points (i.e., about one hundred times

smaller than the estimates obtained by Hamilton (1997) and Carpenter and Demiralp (2006)

for the pre-GFC corridor system with scarce reserves).

The sample period that we use in our estimation is chosen so that the spread between the

(primary credit) Discount-Window rate (DWR) and the overnight reverse repo rate (ONRRP),

and the spread between the IOR and the ONRRP, are constant (and in particular, equal to

75 and 10 bps per annum, respectively, as in our baseline calibration of Section 4).81 This is

important because, as we show in Section 6.2, our theory predicts that changes in these spreads

shift the aggregate demand for reserves. To illustrate the perils of not controlling for these

spreads, we run regression (7) at daily frequency for an extended sample period: 2019/01/01–

2019/09/13. This sample period consists of two subperiods with different spreads between

80The sample goes up to mid-September 2019, when the overnight money market rates exhibited unusual
spikes and exhibited significant volatility. This sample includes 2019/09/13 (Friday) and deliberately stops there
because on 2019/09/16 (Monday), in response to the EFFR printing at the upper limit the target range, the
Desk announced an overnight repo operation to be conducted at 9:30 AM on 2019/09/17 (Tuesday), offering up
to $75 billion against Treasury, agency, and agency MBS collateral. This operation, which injected $53 billion
in additional reserves and led to an immediate decline in rates, was the first time since the GFC that the Desk
conducted an open-market operation to manage the EFFR. The sample we use to estimate γ ought to end before
this policy response since it would clearly violate our identifying assumption. See Afonso et al. (2022) for a
more comprehensive estimation exercise under different identifying assumptions. See Anbil et al. (2020) for a
detailed narrative of the money-market rate spikes of mid-September 2019, and Section 8 below for a quantitative
theoretical analysis of this episode.

81The time series of the administered rates (DWR, IOR, ONRRP) are displayed in Figure 22 (Appendix E).
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administered rates: a first subperiod (from 2019/01/01 to 2019/05/01) with IOR-ONRRP

spread equal to 15 bps, and a second subperiod (starting on 2019/05/02) with IOR-ONRRP

spread equal to 10 bps. (The DWR-ONRRP spread is equal to 75 bps throughout.) The

resulting estimate is γ = −0.0062 (significant at the 1% level), with 95% confidence interval

[−0.00975,−0.00264]. Since the independent variable is measured in billions of dollars and the

dependent variable in basis points, this estimate means that a $1 bn increase in the quantity

of reserves decreases the EFFR-IOR spread by about 0.006 basis points.82

To validate our estimates, we can compare them with those from Afonso et al. (2022),

who provide time-varying estimates for the period 2009-2021 of the slope of the aggregate

demand for reserves using an instrumental variable approach combined with a time-varying

vector autoregressive model of the joint dynamics of reserves and federal fund rates. The slope

of the aggregate demand for reserves for the year 2019 estimated by Afonso et al. (2022) implies

that a 1 percentage point increase in the ratio of total reserves to total assets held by commercial

banks leads to a 1 basis point reduction in the EFFR-IOR spread (see the entry in panel (a),

row 1 of the column labeled “2019” in their Table 1). Since the value of total assets held by

commercial banks was about $17, 000 bn in 2019, a 1 percentage point daily increase in the

ratio of total reserves to total assets held by commercial banks corresponds roughly to a $170

bn increase in total reserves. Thus, the estimate for 2019 that Afonso et al. (2022) report in

Table 1 means that a $1 bn increase in the quantity of reserves decreases the EFFR-IOR spread

by about 0.00588 basis points, which is essentially the same as the estimate we obtain from

regression (7) when we do not control for variation in the IOR-ONRRP spread.

Estimates of the liquidity-effect coefficient (e.g., γ in our regression equation (7), or the

analogous estimates from Hamilton (1997), Carpenter and Demiralp (2006), and Afonso et al.

(2022)) are to be interpreted as local estimates of the slope of the aggregate demand for reserves,

since they can be thought of as the empirical counterparts of the slope of the demand for

reserves in the Poole (1968) model—calculated using a relatively narrow range of variation in

the aggregate supply of reserves. Unlike the Poole (1968) model, our theory does not have a

primitive demand for reserves. But as we change the exogenous quantity of reserves, the model

traces out a series of equilibrium interest rates, which together with the respective quantities

82Since in the quantitative implementation of the theory we focus on a subset of fed funds participants (see
Section E.1.2 in Appendix E for our sample selection criteria), we have also run a version of (7) where the loan
rate used to compute the spread st is the volume weighted average of loans in our sample, and the quantity of
reserves Qt is the aggregate level of reserves held by all banks in our sample. The estimate is γ = −0.0057, which
is within the 95% confidence interval of the estimate reported above.
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of reserves, can be regarded as a model-generated “demand for reserves”.

A.6 An interpolation procedure for counterfactual experiments

Several of the counterfactual and policy experiments that we conduct below involve changes in

the aggregate quantity of reserves. Since our theory features ex ante heterogeneity in reserve

balances, changing the aggregate supply of reserves requires us to specify the underlying change

in the distributions of reserve balances across banks. For example, in order to implement a $1

bn decrease in the aggregate quantity of reserves in the model, we must specify the associated

changes in the beginning-of-day distributions of reserve balances of the four bank types. How

is the $1 bn being drained exactly? Only from fast banks? Only from slow banks? Uniformly

from all banks? We tackle this issue with a simple interpolation procedure that allows us to map

changes in the aggregate quantity of reserves into changes in the cross-sectional distributions

of reserves that is consistent with available observations.83 The procedure is as follows.

Let n̄i
y denote the proportion of banks of type i in our sample for the year y, and let

F̄ i
y denote the empirical beginning-of-day distribution of reserve balances across banks of type

i, estimated from all trading days in year y (as described in Appendix A.3). Let y0 and y1

denote two sample years for which we have estimates of
{
F̄ i
y0
, F̄ i

y1

}
i∈N. For each i ∈ N, and each

y ∈ {y0,y1}, discretize the continuous cumulative distribution function F̄ i
y with N quantiles,

denoted
{
xiy (pn)

}N

n=1
, where {pn}N+1

n=0 is a sequence that satisfies pN+1 = 1 − p0 = 1, with

pn < pn+1 for all n ∈ {0, ..., N}, and xiy (pn) is the number that satisfies F i
y

(
xiy (pn)

)
= pn for

each n ∈ {1, ..., N}.84 For each i ∈ N, y ∈ {y0,y1}, n ∈ {1, ..., N}, and ω ∈ R, use the pair of

quantiles
{
xiy0

(pn) , x
i
y1

(pn)
}
to define the synthetic quantile,

xiyω
(pn) ≡ ωxiy1

(pn) + (1− ω)xiy0
(pn) . (8)

83Empirical studies (e.g., those that estimate the liquidity effect discussed in Appendix A.5) typically abstract
from how reserve-draining or reserve-augmenting shocks are distributed in the cross section of banks. The theo-
retical challenge of having to specify a path for the distribution of reserve balances associated with a certain path
for the aggregate quantity of reserves (which is the variable we usually regard as being under direct control of the
central bank) is common to all existing micro-based models of the fed funds market that allow for heterogeneity
in reserve holdings across banks. Afonso and Lagos (2015b), for example, parametrize the beginning-of-day
distribution of reserves with a Gaussian mixture with two components, and implement changes in the aggregate
quantity of reserves by draining reserves from the two components in a way that their variances and the ratio
of their means remain constant (see footnote 26, and Section C.2 in the Supplemental Material of Afonso and
Lagos (2015b) for details). Afonso et al. (2019), whose main quantitative experiment involves draining a large
quantity of aggregate reserves, assume a two-stage draining scheme: Reserves are drained exclusively from the
banks with the largest initial holdings until their reserves become low enough; and are drained proportionately
from all banks thereafter.

84See Appendix D (Section D.1) for more details on the grids that we use in our quantitative implementation.
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We then use ω ∈ R to define a family of economies indexed by the following distribution of

banks across types and distributions of reserves for each bank type i ∈ N:

n̄i
yω

≡ ωn̄i
y1

+ (1− ω) n̄i
y0

(9)

F̄ i
yω

(a) ≡
∑

n∈{{1,...,N}:xyω (pn)≤a}

(pn − pn−1) , (10)

so the corresponding aggregate quantity of reserves is

Qyω ≡
∑
i∈N

n̄i
yω

∫
adF̄ i

yω
(a) . (11)

Notice that for ω = 1 the distribution of banks across types and the distributions of reserves

for each bank type are as in the base year y1, and for ω = 0 they are as in the base year y0.

Thus, by varying ω on [0, 1] we can use (11) to span any aggregate level of reserves between

Qy1 (the aggregate supply of reserves held by all banks in our sample in base year Y1) and Qy0

(the aggregate supply of reserves held by all banks in our sample in base year Y0). Conversely,

for any aggregate quantity of reserves, Q, between Qy1 and Qy0 , there is an ω ∈ [0, 1] implied

by (11), denoted ω (Q), that decomposes Q into a particular distribution of banks across types

and distributions of reserves for each bank type, namely
{
n̄i
yω(Q)

, F̄ i
yω(Q)

}
i∈N

implied by (9) and

(10). For any ω ∈ [0, 1] our procedure produces a distribution of banks across types and a set of

distributions of reserves for each bank type that are linear interpolations of the corresponding

distributions for the base years. We will use this procedure to conduct counterfactual and policy

experiments in our quantitative model.85

85The procedure also allows for linear extrapolations, e.g., corresponding to parametrizations with ω < 0 or
ω > 1. An alternative to our empirical interpolation/extrapolation procedure would be to integrate a fully
specified capital-structure theory of the bank into our dynamic stochastic heterogeneous-bank fed-funds trading
model in order to establish a theoretical link between market conditions (e.g., policy choices of administered rates
and aggregate supply of reserves) and the cross section of the composition of banks’ assets, and in particular, their
choices of reserve balances. The main challenge would then be to ensure that the endogenous portfolio choices
implied by the theory are quantitatively consistent with the empirical paths for the cross-sectional distributions
of reserves that have accompanied the observed long- and medium-term changes the aggregate supply of reserves.
An attractive feature of our empirical interpolation procedure is that, by construction, it ensures that this is the
case (at least for moderate deviations in the aggregate supply of reserves from those prevailing the base years).
We think that integrating fed funds microstructure theory with a macroeconomic theory of the capital structure
of the banking sector is a promising avenue of research (see Bianchi and Bigio (2022) for work along these lines).
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Total reserves

Deviations of total reserves from moving average

Distribution of daily reserve-draining shocks

Figure 19: Aggregate supply of reserves and reserve-draining shocks.

Notes: Top panel: weekly time series of aggregate quantity of reserves and corresponding 40-day two-sided moving

average. Middle panel: difference between the two time series in the top panel. Bottom panel: empirical histogram of

daily deviations of the aggregate quantity of reserves from its 40-day two-sided moving average (January 2011-July 2019),

and the corresponding Gaussian kernel estimate.
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Figure 21: Theoretical and empirical fed funds trading networks for 2019.
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B Theory: supplementary results

B.1 Value function

Let J i
t (a, c) : N× T× R2 → R denote the maximum attainable payoff to a bank of type i that

at time t ∈ T has reserve balance a ∈ R and net credit position c ∈ R. Then, J i
t (a, c) satisfies

J i
t (a, c)

= Et

{
I{T−t≤min[τ(βi),τ(λi)]}

[∫ T

t
e−r(s−t)ui (a) ds+ e−r(T−t)

[
Ui (a) + e−r(T̄−T )c

]]

+ I{τ(λi)<min[τ(βi),T−t]}

[∫ t+τ(λi)

t
e−r(s−t)ui (a) ds

+ e−rτ(λi)
∑
j∈N

πj

∫
J i
t+τ(λi)

(a− z, c) dGij (z)

]

+ I{τ(βi)<min[τ(λi),T−t]}

[∫ t+τ(βi)

t
e−r(s−t)ui (a) ds

+ e−rτ(βi)
∑
j∈N

σj

∫
J i
t+τ(βi)

[
a− bijt+τ(βi)

(a, ã) , c+Rji
t+τ(βi)

(ã, a)
]
dF j

t+τ(βi)
(ã)

]}
, (12)

where τ (ζ) denotes the exponentially distributed first passage time of the Poisson process with

arrival rate ζ,

πj ≡
λjnj∑
i∈N λini

σj ≡
βjnj∑

k∈N βknk
,

and

(bijt (a, ã) , Rji
t (ã, a))

= arg max
(b,R)∈R2

[
J i
t (a− b, c+R)− J i

t (a, c)
]θij [J j

t (ã+ b, c−R)− J j
t (ã, c)]

θji . (13)

Lemma 1 The function

J i
t (a, c) = V i

t (a) + e−r(T̄−t)c (14)
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satisfies (12) if and only if V i
t (a) satisfies

V i
t (a) = Et

{
I{T−t≤min[τ(βi),τ(λi)]}

[∫ T

t
e−r(s−t)ui (a) ds+ e−r(T−t)Ui (a)

]

+ I{τ(λi)<min[τ(βi),T−t]}

[∫ t+τ(λi)

t
e−r(s−t)ui (a) ds

+ e−rτ(λi)
∑
j∈N

πj

∫
V i
t+τ(λi)

(a− z) dGij (z)

]

+ I{τ(βi)<min[τ(λi),T−t]}

[∫ t+τ(βi)

t
e−r(s−t)ui (a) ds

+ e−rτ(βi)
∑
j∈N

σj

∫ [
V i
t+τ(βi)

(a− bijt+τ(βi)
(a, ã)) + R̄ji

t+τ(βi)
(ã, a)

]
dF j

t+τ(βi)
(ã)

]}
, (15)

with

R̄ji
t+τ(βi)

(ã, a) ≡ e−r{T̄−[t+τ(βi)]}Rji
t+τ(βi)

(ã, a) ,

and (bijt (a, ã) , Rji
t (ã, a)) given by (1) and (2).

Proof. With (14), (13) becomes equivalent to (1) and (2). Substitute (14) into (12) to get

V i
t (a) + e−r(T̄−t)c

= Et

{
I{T−t≤min[τ(βi),τ(λi)]}

[∫ T

t
e−r(s−t)ui (a) ds+ e−r(T−t)

[
Ui (a) + e−r(T̄−T )c

]]

+ I{τ(λi)<min[τ(βi),T−t]}

[∫ t+τ(λi)

t
e−r(s−t)ui (a) ds

+ e−rτ(λi)
∑
j∈N

πj

∫ [
V i
t+τ(λi)

(a− z) + e−r{T̄−[t+τ(λi)]}c
]
dGij (z)

]

+ I{τ(βi)<min[τ(λi),T−t]}

[∫ t+τ(βi)

t
e−r(s−t)ui (a) ds+ e−rτ(βi)

∑
j∈N

σj

∫ [
V i
t+τ(βi)

(a− bijt+τ(βi)
(a, ã))

+ e−r{T̄−[t+τ(βi)]}[c+Rji
t+τ(βi)

(ã, a)]

]
dF j

t+τ(βi)
(ã)

]}
,

which after cancelling the terms proportional to c, becomes identical to (15).
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Lemma 2 The Bellman equation (15) can be written as

V i
t (a) =

[
1− e−(r+βi+λi)(T−t)

] ui (a)

r + βi + λi
+ e−(r+βi+λi)(T−t)Ui (a)

+ λi

∫ T

t
e−(r+βi+λi)(τ−t)

∑
j∈N

πj

∫
V i
τ (a− z) dGij (z)

 dτ

+ βi

∫ T

t
e−(r+βi+λi)(τ−t)

V i
τ (a) +

∑
j∈N

σjθij

∫
max
b∈R̄

Sij
τ (a, ã, b) dF j

τ (ã)

 dτ (16)

or equivalently, as (3) with boundary condition V i
T (a) = Ui (a).

Proof. With the bargaining outcomes (1) and (2), (15) can be rewritten as

V i
t (a) = Et

{
I{T−t≤min[τ(βi),τ(λi)]}

[∫ T

t
e−r(s−t)ui (a) ds+ e−r(T−t)Ui (a)

]

+ I{τ(λi)<min[τ(βi),T−t]}

[∫ t+τ(λi)

t
e−r(s−t)ui (a) ds+ e−rτ(λi)

∑
j∈N

πj

∫
V i
t+τ(λi)

(a− z) dGij (z)

]

+ I{τ(βi)<min[τ(λi),T−t]}

[∫ t+τ(βi)

t
e−r(s−t)ui (a) ds

+ e−rτ(βi)
∑
j∈N

σj

∫ [
V i
t+τ(βi)

(a) + θij max
b∈R̄

Sij
t+τ(βi)

(a, ã, b)

]
dF j

t+τ(βi)
(ã)

]}
,

where

Sij
t (a, ã, b) ≡ V i

t (a− b) + V j
t (ã+ b)− V i

t (a)− V j
t (ã) .

The first term on the right side of V i
t (a) can be written as

Et

{
I{T−t≤min[τ(βi),τ(λi)]}

[∫ T

t
e−r(s−t)ui (a) ds+ e−r(T−t)Ui (a)

]}
= e−(βi+λi)(T−t)

{[
1− e−r(T−t)

] ui (a)
r

+ e−r(T−t)Ui (a)

}
.
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The second term on the right side of V i
t (a) can be written as

Et

I{τ(λi)<min[τ(βi),T−t]}

∫ t+τ(λi)

t
e−r(s−t)ui (a) ds+ e−rτ(λi)

∑
j∈N

πj

∫
V i
t+τ(λi)

(a− z) dGij (z)


=

λi

βi + λi

r
[
1− e−(βi+λi)(T−t)

]
− (βi + λi) e

−(βi+λi)(T−t)
[
1− e−r(T−t)

]
r + βi + λi

ui (a)

r

+

∫ T−t

0
λie

−(r+βi+λi)y

∑
j∈N

πj

∫
V i
t+y (a− z) dGij (z)

 dy.

The third term on the right side of V i
t (a) can be written as

V i
t (a) = Et

{
I{τ(βi)<τ(λi)}I{τ(βi)<T−t}

[∫ t+τ(βi)

t
e−r(s−t)ui (a) ds

+ e−rτ(βi)
∑
j∈N

σj

∫ [
V i
t+τ(βi)

(a) + θij max
b∈R̄

Sij
t+τ(βi)

(a, ã, b)

]
dF j

t (ã)

]}

=
βi

βi + λi

r
[
1− e−(βi+λi)(T−t)

]
− (βi + λi) e

−(βi+λi)(T−t)
[
1− e−r(T−t)

]
r + βi + λi

ui (a)

r

+

∫ T−t

0
βie

−(r+βi+λi)z

∑
j∈N

σj

∫ [
V i
t+z (a) + θij max

b∈R̄
Sij
t+z (a, ã, b)

]
dF j

t+z (ã)

 dz.

Thus, we can write

V i
t (a) =

[
1− e−(r+βi+λi)(T−t)

] ui (a)

r + βi + λi
+ e−(r+βi+λi)(T−t)Ui (a)

+ λi

∫ T−t

0
e−(r+βi+λi)y

∑
j∈N

πj

∫
V i
t+y (a− s) dGij (s)

 dy

+ βi

∫ T−t

0
e−(r+βi+λi)z

∑
j∈N

σj

∫ [
V i
t+z (a) + θij max

b∈R̄
Sij
t+z (a, ã, b)

]
dF j

t+z (ã)

 dz.

With a change of variables in the integrals with respect to time,

V i
t (a) =

[
1− e−(r+βi+λi)(T−t)

] ui (a)

r + βi + λi
+ e−(r+βi+λi)(T−t)Ui (a)

+ λi

∫ T

t
e−(r+βi+λi)(τ−t)

∑
j∈N

πj

∫
V i
τ (a− z) dGij (z)

 dτ

+ βi

∫ T

t
e−(r+βi+λi)(τ−t)

V i
τ (a) +

∑
j∈N

σjθij

∫
max
b∈R̄

Sij
τ (a, ã, b) dF j

τ (ã)

 dτ. (17)
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To obtain (3), simply differentiate (16) with respect to t.

B.2 Extension: regulatory borrowing costs

In this section we generalize the theory to allow for proportional borrowing costs to proxy for

the effects of regulatory constraints that affect banks’ incentives to buy fed funds. Let

Γi
t(a, b, R) ≡ V i

t (a− b)− V i
t (a) +

[
1 + I{b<0}κi

]
e−r(T̄−t)R (18)

denote payoff of a bank of type i ∈ N, with pre-trade balance a, that at time t sells a loan of

size b in exchange for a repayment of size R delivered at time T̄ , with κi ∈ R+. Intuitively, if

b, R ∈ R+, then the bank is “selling fed funds” (i.e., lending) and the gain from trade is as in

Section 2.2. Conversely, if b, R ∈ R−, then the bank is “buying fed funds” (i.e., borrowing), and

κi captures the effects of policies that increase the shadow cost of the bank’s liabilities. In all

our calibrations we set κG large enough to make our theory consistent with the fact that the

business model of a GSE consists of lending, but not borrowing in the fed funds market. In

our 2019 calibration we use κi for i ∈ {F,M, S} to capture the effects of the prudential liquidty

regulations discussed in Appendix C (Section C.2). With borrowing costs, the bargaining

outcome at time t between two banks of type i and j, with respective balances a and ã, denoted

(bijt (a, ã) , Rji
t (ã, a)), is the solution to

max
(b,R)∈R̄×R

Γi
t(a, b, R)θijΓj

t (ã,−b,−R)θji . (19)

The correspondig first-order condition with respect to R is

θij
[
1 + I{b<0}κi

]
Γj
t (ã,−b,−R) = θji

[
1 + I{0<b}κj

]
Γi
t(a, b, R),

which implies Rji
t (ã, a) is given by

e−r(T̄−t)Rji
t (ã, a) =

θij
1 + I{0<bijt (a,ã)}κj

[V j
t (ã+ bijt (a, ã))− V j

t (ã)]

+
θji

1 + I{bijt (a,ã)<0}κi
[V i

t (a)− V i
t (a− bijt (a, ã))], (20)

and

bijt (a, ã) ∈ argmax
b∈R̄

Ŝij
t (a, ã, b) , (21)

where

Ŝij
t (a, ã, b) ≡ Γ̂ij

t (a, ã, b)
θij Γ̂ji

t (ã, a,−b)θji ,

5



with

Γ̂ij
t (a, ã, b) ≡ θij

{
Sij
t (a, ã, b)−

I{0<b}κj − I{b<0}κi

1 + I{0<b}κj
[V j

t (ã+ b)− V j
t (ã)]

}
Γ̂ji
t (ã, a,−b) ≡ θji

{
Sij
t (a, ã, b)−

I{0<b}κj − I{b<0}κi

1 + I{b<0}κi

[
V i
t (a)− V i

t (a− b)
]}

.

In summary, the bargaining solution, (bijt (a, ã) , Rji
t (ã, a)), is given by (21) and (20), and

the value function V i
t (a) now satisfies

rV i
t (a)− V̇ i

t (a) = ui (a) + λi

∑
j∈N

πj

∫ [
V i
t (a− z)− V i

t (a)
]
dGij

t (z)

+ βi
∑
j∈N

σj

∫
Γi
t(a, b

ij
t (a, ã) , Rji

t (ã, a))dF j
t (ã), (22)

with Γi
t as defined in (18). Notice that (21), (20), and (22) generalize (1), (2), and (3), respec-

tively (and the former reduce to the latter if κi = 0 for all i ∈ N).
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C Institutional background and regulation

In this section we review three financial regulations that affect banks’ incentives to borrow

and lend in the fed funds market. Two of them directly increase a bank’s shadow value of

holding reserves by imposing regulatory balance-sheet constraints that can be satisfied with

reserve balances (traditional reserve requirements, discussed in Section C.1, and the Liquidity

Coverage Ratio, discussed in Section C.2.1). The third, is a leverage constraint that increases a

bank’s shadow cost of all borrowing, including fed funds purchases (the Supplementary Leverage

Ratio, discussed in Section C.2.2).

C.1 Traditional reserve requirements (Regulation D)

Reserve requirements have been a part of the financial landscape in the United States since

before the Federal Reserve Act of 1913 that created the system of Reserve Banks.86 Regula-

tion D (“Reserve Requirements for Depository Institutions”) is the Federal Reserve regulation

that stipulates reserve requirements for depository institutions (i.e., commercial banks, savings

banks, thrift institutions, credit unions, and agencies and branches of foreign banks located in

the United States).

Until March 2020, Regulation D required depository institutions to keep a minimum amount

of reserves against their transaction accounts (such as demand deposits).87 This reserve require-

ment was 0%, 3%, or 10% of transaction account deposits depending on the size of the bank’s

reservable liabilities.88 Institutions had to satisfy reserve requirements by holding cash in their

vaults or as a balance in the institution’s account at the Federal Reserve Bank in the Federal

Reserve District in which the institution is located (either an account of the institution or an

account of the institution’s Federal Reserve pass-through correspondent).

Reserve requirements were calculated based on a bank’s deposit accounts during compu-

tation periods that depended on the frequency (either weekly or quarterly) with which an

86Reserve requirements at the national level were first established with the passage of the National Bank Act
in 1863. In the original Federal Reserve Act of 1913, for example, banks were required to hold in reserve different
percentages of their demand deposits, depending on whether they were classified as central reserve city banks (18
percent), reserve city banks (15 percent), or country banks (12 percent). See Feinman (1993) for more background
and references on the history of reserve requirements in the United States.

87There was an explicit exemption from Regulation D for bank obligations in nondeposit form to another bank,
which included “federal funds purchased”.

88The Federal Reserve Board reduced all reserve requirement ratios to 0% effective March 26, 2020.
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institution files an FR 2900 report.89 Each reserve computation period was used to calculate

the reserve requirement that a bank had to satisfy on a lagged basis, i.e., during a 14-day

(reserve) maintenance period in the future.

For institutions that file the FR 2900 report weekly, a (FR 2900) reporting period is one

week long, covering the seven consecutive calendar days beginning on a Tuesday and ending on

the following Monday. The computation period for weekly reporters consisted of two reporting

periods, i.e., 14 consecutive days beginning on a Tuesday and ending on the second Monday

thereafter. A maintenance period consisted of 14 consecutive days beginning on a Thursday

and ending on the second Wednesday thereafter. Each reserve computation period was used

to calculate the reserve requirement that a bank had to satisfy on a lagged basis: The reserve

balance requirement that had to be satisfied during a maintenance period was based on the

average level of net transaction accounts and vault cash held during the computation period

that had ended 17 days earlier.90

Federal Reserve Banks were authorized to assess charges for deficiencies at a rate of 1

percentage point per year above the primary credit rate in effect for borrowings from the

Federal Reserve Bank on the first day of the calendar month in which the deficiencies occurred.

Charges were assessed on the basis of daily average deficiencies during each maintenance period.

C.2 Post-GFC regulation

In the years following the Great Financial Crisis (GFC), the Federal Reserve Board (FRB),

the Federal Deposit Insurance Corporation (FCC), and the Office of the Comptroller of the

Currency (OCC) implemented versions of two regulations agreed to by the Basel Committee

on Banking Supervision (BCBS), and consistent with the Dodd-Frank Wall Street Reform

and Consumer Protection Act: The Liquidity Coverage Ratio (LCR), a prudential liquidty

standard, and the Supplementary Leverage Ratio (SLR), a prudential leverage standard. Both

affect banks’ payoffs from trading in the fed funds market. We discuss each in turn.

C.2.1 Liquidity Coverage Ratio (LCR)

The first objective of the Basel III accord agreed upon by the members of the Basel Committee

on Banking Supervision (BCBS) is to promote the short-term resilience of the liquidity risk

89This report collects information on select deposits and vault cash from depository institutions.
90See Federal Reserve Board (2019a) for details.
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profile of banks. The BCBS developed the LCR to achieve this objective.91 Specifically, the

LCR is designed to ensure that a bank maintains an adequate level of unencumbered, High

Quality Liquid Assets (HQLA) that can be converted into cash to meet its liquidity needs for

a 30-calendar-day time horizon under a liquidity stress scenario specified by supervisors.

The LCR is defined as

LCR ≡ H

L
, (23)

where H denotes HQLA, and L is a measure of total net cash outflows in a 30-day standardized

stress scenario. The HQLA consist of Level 1 assets and Level 2 assets. Level 1 assets, which

are not subject to haircuts or quantitative caps, include reserves in excess of Regulation D held

at a Federal Reserve Bank, as well as securities issued or guaranteed by the U.S. Treasury.

Level 2 assets are subject to prescribed haircuts and are capped at no more than 40% of a

banking organization’s total HQLA.92 For our purposes, we can think of H as consisting of two

components: (i) reserves, denoted Q0, minus Regulation D required reserves, denoted RD; and

(ii) the value (net of haircut) of all other assets that qualify as HQLA, denoted A, i.e.,

H = A+M,

where

M ≡ max (Q1, 0) (24)

and Q1 ≡ Q0 −RD denotes the quantity of reserves in excess of the Regulation D requirement.

The “max” in (24) reflects that only reserves in excess of Regulation D qualify as HQLA.

Banks report H and L, and these reports are publicly available at a quarterly frequency.93

Given H, since we have independent information on Q0 and RD (and therefore M), we can

infer A. The LCR regulation requires

1 ≤ LCR (25)

91See Basel Committee on Banking Supervision (2010) for more details on the rationale for the regulation.
92Level 2 assets are further divided into Level 2A and Level 2B assets. Level 2A assets, which are subject to a

15% haircut, include claims on or guaranteed by a U.S. government-sponsored enterprise (GSE) such as Fannie
Mae and Freddie Mac. Level 2B assets, which are subject to a 50% haircut and are capped at no more than
15% of a banking organization’s total HQLA, include certain corporate debt securities issued by non-financial
companies, and certain publicly traded common equities issued by non-financial companies that are included in
the Russell 1000 Index or a foreign equivalent index for shares held in foreign jurisdictions.

93E.g., from the S&P Global Capital IQ database. See Appendix E (Section E.1.3) for details.
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daily, or monthly, depending on the size and other characteristics of the bank.94 For our

purposes, the key implication of the policy constraint (25) is that it may cause a bank to treat

certain holdings of HQLA as required to comply with the LCR regulation. By this we mean

that the LCR constraint may cause the bank to inpute an additional shadow cost of reducing its

holdings of HQLA on a typical day—including reserve balances. In the specific case of reserve

balances, the bank may impute an additional shadow cost of selling fed funds, since this may

drive the bank’s reserves (net of the Regulation D requirement) below the level of reserves that

the bank routinely allocates to comply with the LCR regulation. Thus, in practice, banks may

regard some of the reserves in excess of the Regulation D requirement as being “required” to

satisfy the LCR constraint. The fact that the LCR regulation allows for substitutability among

the HQLA in the numerator of the left side of (25) presents us with an identification challenge

when trying to estimate the share of a bank’s reserve balances in excess of the Regulation

D requirement that the bank treats as “required” to satisfy the LCR constraint. Next, we

formalize this identification problem, and describe how we address it.

For each bank, we observe H, M , and A. We want to express M as the sum of a component,

M̂R, that represents the quantity of reserves (in excess of the Regulation D requirement) that

the bank relies on to comply with the LCR regulation, and a component, M̂E , that represents

reserves in excess of the Regulation D and the LCR requirements. Similarly, a bank may hold

HQLA (other than reserves) in excess of what would be necessary to meet the LCR requirement

for reasons other than having to comply with the LCR regulation, so we can also decompose

A into two (unobserved) components: ÂR, which represents the value of HQLA (other than

reserves in excess of the Regulation D requirement) that the bank regards as being necessary

to comply with the LCR regulation, and ÂE , which represents the value of HQLA (other than

reserves in excess of the Regulation D requirement) that the bank regards as being in excess of

94Relatively large institutions regulated by the FRB must calculate and maintain a liquidity coverage ratio
that is equal to or greater than 1 on each business day (or, in the case of a smaller FRB-regulated institutions,
on the last business day of the applicable month). The LCR rule is codified at 12 CFR part 50 (OCC), 12 CFR
part 249 (FRB), and 12 CFR part 329 (FDIC).
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what is required to meet the LCR regulation. In summary, {M̂ j , Âj}j∈{R,E} satisfy:

M = M̂R + M̂E (26)

A = ÂR + ÂE (27)

ÂR + M̂R ≤ L, with “=” if L ≤ A+M (28)

ÂE + M̂E = 0, if A+M < L (29)

M̂ j , Âj ∈ R+ for j ∈ {R,E}. (30)

We are interested in using the policy constraint (25) along with data on M , A, and L, and

(26)-(30), to estimate bank-level bounds for M̂R.

There are three special cases in which the constraint (25) together with knowledge of M ,

A, and L, and the definitions (26)-(30) are sufficient to identify M̂R and ÂR. First, if a bank

has LCR ≤ 1 (i.e., if it is not complying with the LCR regulation in a given sample period),

then the bank is clearly holding no excess HQLA of any type, so M̂R = M , ÂR = A, and

M̂E = ÂE = 0, as implied by (26), (27), (29), and (30). Second, if LCR ≥ 1 and Q1 ≤ 0,

then M = 0, so the LCR requirement, L, is being satisfied exclusively with HQLA other than

reserves, i.e., ÂR = L and ÂE = A−L, with M̂R = M̂E = 0, as implied by (26), (27), (28), and

(30). Third, if LCR ≥ 1 and A = 0, then the LCR requirement, L, is being satisfied exclusively

with reserves, M , i.e., M̂R = L and M̂E = M − L, with ÂR = ÂE = 0, as implied by (26),

(27), (28), and (30).

In practice, most banks satisfy the LCR constraint (25) with min (M,A) ≥ 0, and for such

banks it is not obvious how to decompose the level of required HQLA, i.e., L, into the two

unobserved components, M̂R and ÂR. However, notice that conditions (26)-(30) imply M̂R

must satisfy the following bounds:

M̂R

{
= M if A+M < L
∈ [max (0, L−A) ,min (L,M)] if L ≤ A+M.

(31)

We can write (31) as

M̂R =

{
M if A+M < L
ρmin (L,M) + (1− ρ)max (0, L−A) if L ≤ A+M,

(32)

for some ρ ∈ [0, 1]. For a given ρ, (26)-(30), and (32) imply

ÂR =

{
A if A+M < L
(1− ρ)min (L,A) + ρmax (0, L−M) if L ≤ A+M,
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and given M̂R and ÂR, M̂E and ÂE are implied by (26) and (27).

The parameter ρ ∈ [0, 1] represents the bank’s (unobserved) preference for satisfying the

LCR requirement, L, with reserves (rather than with other HQLA). For example, if ρ = 1,

the bank has a strong preference for satisfying the LCR with reserves, and this will reduce the

bank’s willingness to lend reserves in the fed funds market. If ρ = 0, the bank has a strong

preference for satisfying the LCR with HQLA other than reserves, and will be less constrained

by its reserve balance when trading in the fed funds market.

According to elementary theory, the quantity of reserves in excess of regulatory reserve

requirements is a key determinant of a bank’s “fundamental” incentive to borrow and lend in

the fed funds market. For example, a bank whose reserve balance is lower than the minimum

regulatory requirement, has a fundamental incentive to borrow (at a rate no larger than the

shadow cost of violating the regulatory requirement). Conversely, a bank whose reserve balance

is higher than the regulatory requirement, would have, all else equal, an incentive to lend (e.g., to

banks with negative excess reserves, at a rate between the lender’s and the borrower’s respective

shadow prices of reserves). For this reason, it is important to impute an accurate notion of

“excess reserves” in any empirical implementation of a theory of interbank loans.

The traditional definition of “excess reserves”, which only subtracts the Regulation D re-

quirement from the bank’s reserve balance is not an adequate notion of excess reserves for

institutions that must comply with the LCR regulation.95 In our empirical and quantitative

work we use a more comprehensive notion of “required reserves” that includes not only the level

of reserves that a bank is required to hold to comply with Regulation D, but also the level of

reserves that the bank holds toward meeting the LCR requirement. Specifically, our benchmark

definition of “excess reserves” for any bank that is subject to, and satisfies the LCR constraint

(25), is Q2 ≡ Q1 −RL, where RL ≡ max (0, L−A). In other words, to construct our preferred

notion of excess reserves, we start from the traditional notion of reserves in excess of the Reg-

ulation D requirement, Q1, and subtract the minimum level of reserves needed to comply with

the LCR requirement, i.e., RL.
96 Notice that our measure of excess reserves coincides with the

traditional measure for a bank that has enough HQLA other than reserves to meet the LCR

95The LCR regulation applies to bank holding companies (BHCs) and savings and loans holding (SLHCs) with
at least $50 bn in total consolidated assets.

96From (32), we see that RL is the same as M̂R when ρ = 0 (in the empirically relevant case with L ≤ A+M).
In this sense, our preferred notion of excess reserves selects the largest level of excess reserves that is consistent
with the LCR constraint, (25).
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requirement, i.e., Q1−Q2 = RL = 0 if L ≤ A. But our measure of excess reserves is lower than

the traditional measure for a bank whose holdings of HQLA other than reserves are insufficient

to meet the LCR requirement, i.e., if A < L, then 0 < Q1 −Q2 = RL = L−A.

C.2.2 Supplementary Leverage Ratio (SLR)

The SLR is the U.S. banking agencies’ implementation of the “Basel III Tier 1 Leverage Ratio”,

which is defined as

SLR ≡ Tier 1 Capital

Total Leverage Exposure
. (33)

The numerator (defined in U.S. Basel III) includes common stock and retained earnings. The

denominator is a comprehensive measure of assets, composed of four elements: (1) on-balance

sheet assets, (2) derivative exposures, (3) repo-style transaction exposures, and (4) other off-

balance sheet exposures. The SLR regulation requires a bank to maintain an SLR above a

threshold; specifically, either SLR ≥ 0.03, or SLR ≥ 0.05.97

C.2.3 Resolution Planning

In the aftermath of the GFC, regulatory authorities started requiring large “systemically im-

portant” financial institutions (e.g., BHCs with total consolidated assets of $50 bn or more)

to periodically submit a resolution plan (also known as “living will”) to the Federal Reserve

and the Federal Deposit Insurance Corporation. A resolution plan describes in some detail the

company’s strategy for rapid and orderly resolution in the event of material financial distress

or failure of the company.

C.2.4 Effects of LCR and SLR regulation on fed funds trading incentives

In this section we discuss the effects of the LCR and SLR reguation on banks’ incentives to

borrow and lend in the fed funds market.

First, we consider the effect of LCR regulation on banks’ incentives to borrow and lend in

the fed funds market. Reserves appear (with weight =1) in the numerator of the LCR in (23),

and overnight fed fund liabilities appear in the denominator (also with weight =1). Consider

97The threshold equals 3% for advanced approaches firms, which include state banks, savings associations, bank
holding companies (BHCs), and saving and loan holding companies (SLHCs) with more than $250 bn in total
consolidated assets, or more than $10 bn of on-balance sheet foreign exposures. The threshold equals 5% for the
8 US bank-holding companies that have been identified by the Financial Stability Board as global systemically
important banks (and their U.S. insured depository institution subsidiaries).
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a bank that borrows ℓ in the fed funds market. The LCR before the trade is H
L and after the

trade it is H+ℓ
L+ℓ . Since

∂

∂ℓ

(
H + ℓ

L+ ℓ

)
=

L−H

(L+ ℓ)2
,

it follows that the trade does not affect the LCR if the bank is satisfying it exactly pre-trade (i.e.,

if LCR ≡ H
L = 1), increases the LCR if the borrowing bank is below the LCR target pre trade

(i.e., if LCR ≡ H
L < 1), and decreases the LCR if the borrowing bank is above the LCR target

pre trade (i.e., if LCR ≡ H
L > 1). For a bank that lends ℓ in the fed funds market, the LCR

before the trade is H
L and after the trade it is H−ℓ

L .98 Hence, selling fed funds unambiguously

reduces the LCR. To summarize, LCR regulation increases the shadow cost of selling fed funds

(because lending reserves tightens the LCR constraints of lenders), and increases the shadow

cost of borrowing for banks whose LCR constraints are slack at the time of the trade (because

borrowing reserves tightens the LCR constraints of such banks).

Second, we consider the effect of SLR regulation on banks’ incentives to borrow and lend in

the fed funds market. Let A denote assets, L denote liabilities, and C ≡ A− L denote capital.

Then, we can write (33) as

SLR ≡ C
A

=
A− L
A

. (34)

Notice that lending in the fed funds market does not change the SLR because the bank that

acts as a lender is just exchanging reserves for an overnight credit of reserves, which leaves

both L and A unchanged. However, borrowing in the fed funds market reduces the SLR, since

borrowing ℓ dollars worth of reserves increases liabilities from L to L+ ℓ, and increases assets

from A to A + ℓ, and therefore the SLR is reduced from A−L
A to A−L

A+ℓ . To summarize, SLR

regulation has no effect on the shadow cost of lending fed funds (because lending reserves does

not alter the SLR constraint), but increases the shadow cost of buying fed funds (because

borrowing reserves tightens the SLR constraint of solvent banks).

98The quantity of reserves sold, ℓ, is subtracted from the HQLA of the lender, but the corresponding fed funds
credit is not added to the total of HQLA of the lender because fed funds not qualify as a HQLA.
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D Computation

In this section we discuss computational issues. Section D.1 outlines the solution algorithm.

Section D.2 explains how we compute, in the quantitative theory, the statistics that we compare

with their empirical counterparts.

D.1 Solution algorithm

The steps we use to solve for the equilibrium of the model are as follows.

Step 0: Set grids. We think of the time interval [0, T ] as corresponding to a trading day in

the fed-funds market, which consists of 9.5 hours (from 9.00 AM to 5.30 PM). We divide the

interval [0, T ] into NT +1 periods, denoted t = 0, 1, . . . , NT , and set NT = 799. As we have 800

periods, each period represents approximately 42 seconds (i.e., 9.5×60×60
800 = 42.75 seconds).99

For each bank type i ∈ N, we construct an equally spaced grid for reserve balances,

Ai =
{
ai1, a

i
2, . . . , a

i
Na

}
, with Na = 150. We interpret each unit of reserves in the model as

corresponding to $10 bn in the data. For the benchmark years 2017 and 2019, we set ai1 and

aiNa
equal to the 0.5th and 99.5th percentiles of the kernel estimate of the beginning-of-day

distributions, respectively (see Section A.3). We use the interpolation procedure explained in

Section A.6 to construct grids whenever we change the total quantity of balances. In all cases

we add 5 additional points to the grid, {−0.2,−0.1, 0, 0.1, 0.2}.100

For each pair of bank types, i, j ∈ N, we construct a grid for payment sizes, Zij =

99A model period corresponding to 42 seconds is short enough to approximate the empirical frequency of loans
even for the most active banks. Payment shocks, however, are much more frequent than loans: In Section A.2
we had to use a period length of 1 second in order to get a good approximation to the empirical frequency
of payment shocks (especially for fast banks, which typically experience several payment shocks per minute,
and sometimes even more than one payment shock per second). In order to allow for such high frequency of
payment shocks, we could simply discretize [0, T ] into 34,200 periods, each corresponding to 1 second. With so
many periods, however, the computational burden would increase significantly, so we took a different approach.
Payment shocks, although very frequent, are computationally cheap since they involve no optimization (they
are just “forced” transfers between banks). Loans on the other hand, are computationally more expensive (they
involve maximization of the joint surplus), but are also significantly less frequent than payment shocks in the
data. In the quantitative implementation of the model, we balance these considerations as follows. We regard
each model period as being composed of 42 subperiods, each corresponding to 1 second in the actual trading
day. We then treat the first 41 subperiods as “payment-shock rounds” (in each of these rounds, there are only
bilateral payment shocks among banks), and treat the 42nd subperiod as a “loan round” in which banks get
bilateral opportunities to negotiate loans. In sum, this allows us to have payment shocks that are as frequent as
1 per second, and loans that are as frequent as one every 42 seconds, while economizing on computation time.
100We add these grid points because the value functions are numerically close to having a kink around a = 0

towards the end of the trading day (i.e., as t gets closer to NT ).
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{
zij1 , z

ij
2 , . . . , z

ij
Nz

}
, withNz = 35. The probability mass function for payment sizes, {Gij(z)}z∈Zij ,

is constructed with the procedure described in Section A.2.

Step 1: Guess the distribution of balances. For each a ∈ Ai, let f i
t (a) be the fraction

of banks of type i ∈ N that hold a quantity of reserves equal to a at the beginning of period

t, with
∑

a∈Ai f i
t (a) = 1. The beginning-of-day distribution, f i

0(·), is given since F i
0(a) ≡∑

x∈Ai f i
0(x)I{x≤a} is estimated from the data with the procedure described in Section A.3.

Guess the distributions {f i
t (a)}a∈Ai,i∈N for each t ∈ {1, 2, . . . , NT }.

Step 2: Compute the value function. Since for each i ∈ N and a ∈ Ai we have the

terminal condition, V i
NT

(a) = Ui(a), where Ui(·) is the exogenous end-of-day payoff function,

we can then solve backwards for the value function, {V i
t (a)}a∈Ai,i∈N,t∈{0,...,NT−1}. Each of these

backward iterations between period t ∈ {NT , . . . , 1} and period t − 1 consists of two steps.

In the first step, for each pair of bank types i, j ∈ N, we compute the bargaining outcomes,{
bijt (a

i, aj), Rji
t (a

j , ai)
}
ai∈Ai,aj∈Aj

, taking {V i
t (a)}a∈Ai,i∈N as given. In the second step we solve

for the value function backwards, i.e., we solve for {V i
t−1(a)}a∈Ai,i∈N given the one-period-ahead

bargaining outcomes and values, i.e.,
{
bijt (a

i, aj), Rji
t (a

j , ai), V i
t (a

i)
}
ai∈Ai,aj∈Aj ,(i,j)∈N2

. Next,

we explain these two steps in detail.

Step 2.1: Solve for bijt (·, ·) and Rji
t (·, ·). Given the values {V i

t (·)}i∈N, we compute the

bargaining outcome for the loan size, bijt (a, ã), as in (21), which can be written as:

bijt (a, ã) = argmax
b

{
1

1 + I{b<0}κi
V i
t (a− b) +

1

1 + I{0<b}κj
V j
t (ã+ b)− ϵ|b|

}
, (35)

where ϵ = 1e-9 is a small trading cost introduced to rule out loans with negligible gains from

trade. Since a unit of reserves in the model corresponds to $10 bn in the data, the value of ϵ

implies a trading cost of $10 for a loan of size $1 bn. We use a Golden search routine to solve

for bijt (a, ã) in (35), for each a ∈ Ai, ã ∈ Aj , and (i, j) ∈ N×N. Given the bargained loan sizes,

{bijt (ai, aj)}ai∈Ai,aj∈Aj ,(i,j)∈N2 , we can compute the associated repayments, Rji
t (a

j , ai), as in (20),

and the gain from trade to the bank of type i and balance ai, i.e., Γi
t(a, b

ij
t (a

i, aj), Rji
t (a

j , ai)),

as in (18).

Step 2.2: Solve for V i
t (a) backwards. We divide each period into two stages. Random

payments between pairs of banks take place in the first stage. Trade between pairs of banks

takes place in the second stage. The first stage is divided further into NS subperiods, each
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indexed by s ∈ {1, 2, . . . , NS} with NS = 42, so each of these subperiods corresponds to 1

second (since each full model period corresponds to approximately 42 seconds). We solve for

the value function within each model period backwards: we start by solving for the value of

trade decisions in the second stage, and then integrate the value of the payment shocks in the

42 subperiods of the first stage.

Let V̂ i
t (a) be the value of a bank of type i ∈ N with balance a ∈ Ai at the beginning of the

second stage of period t. This value satisfies

(1 + ∆r)V̂ i
t (a) = ∆ui(a) + ∆βi

∑
j∈N

σj
∑
ã∈Aj

Γ̄ij
t+1(a, ã)f

j
t+1(ã) + V i

t+1(a), (36)

where Γ̄ij
t (a, ã) ≡ Γi

t(a, b
ij
t (a, ã), R

ji
t (ã, a)), and ∆ = 1/ [NS(NT + 1)] is the size of the time

interval (including all trade and payment periods in the day). Let Ṽ i
t,s(a) be the value of a bank

of type i ∈ N with balance a ∈ Ai at the beginning of subperiod s of the first stage of period t.

This value satisfies

(1 + ∆r)Ṽ i
t,s(a) = ∆ui(a) + ∆λi

∑
j∈N

πj
∑
z∈Zij

[
V i
t (a− z)− V i

t (a)
]
Gij(z) + Ṽ i

t,s+1(a), (37)

for s = 1, . . . , NS , with boundary conditions Ṽ i
t,NS+1(a) = V̂ i

t (a), and Ṽ i
t,1(a) = V i

t (a). Equa-

tions (36) and (37) are the discrete-time approximations to the Bellman equation (22).

We solve (36)-(37) backwards, as follows. Given V i
t+1(·) (recall the terminal condition

V i
NT

(·) = Ui(·)), we compute Γ̄ij
t+1(·, ·), and given our guess of {f i

t+1(·)}i∈N, we compute

V̂ i
t (·) using (36). We then compute {Ṽ i

t,s(·)}s∈{1,2,...,NS} using (37) and the terminal condition

Ṽ i
t,NS+1(·) = V̂ i

t (·) by iterating backwards, which delivers V i
t (·) = Ṽ i

t,1(·).

Step 3: Compute the implied distribution of balances Given the negotiated loan sizes,

bijt (·, ·) and the distribution of random payments, we can solve for the distribution of balances

forward from an initial condition, f i
0(a). As in step 2, we need to compute the evolution of

balances for the two within-period stages (the payments stage, and the trading stage). Since

we are solving for the distribution of reserves forward, we start with the first stage and then

move to the second stage.

Let f̃ i,new
t,s (am) be the fraction of banks of type i ∈ N with balance am ∈ Ai, at the beginning

of subperiod s of the first stage of period t. We use the superscript “new” to emphasize that

this is the new distribution implied by the bargaining outcomes in step 2 (rather than the
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distribution that was used to derive those outcomes). Then,

f̃ i,new
t,s (am) = (1−∆λi)f̃

i,new
t,s−1 (am) + ∆λi

∑
j∈N

∑
a∈Ai

∑
z∈Zij

πjL (am, a− z)Gij(z)f̃
i,new
t,s−1 (a) (38)

for s = 1, . . . , NS , with initial condition f̃ i,new
t,0 (am) = f i,new

t (am), and where

L(am, x) ≡ I{x∈(am−1, am]}
x− am−1

am − am−1

implements a linear interpolation. The recursion (38) is initialized with the exogenous time-0

distribution of balances, i.e., f i,new
0 (am) = f i

0(am).

Let f̂ i,new
t (am) be the fraction of banks of type i ∈ N with balance am ∈ Ai after the trades

in the second stage of period t; it is given by

f̂ i,new
t (am) = (1−∆βi)f̃

i
t,NS

(am)

+ ∆βi
∑
j∈N

∑
a∈Ai

∑
ã∈Aj

σjL
(
am, a− bijt (â, ã)

)
f̃ i,new
t,NS

(a)f̃ j,new
t,NS

(ã).

Having solved for f̂ i,new
t (·), set f i,new

t+1 (·) = f̃ i,new
t+1,0(·) = f̂ i,new

t (·), and move to next period.

Step 4: Check for convergence. We use two criteria for convergence.

Criterion 1. We determine that the algorithm has converged if the probability distribution

in step 1 is close enough to the probability distribution obtained after step 4. Specifically, we

consider the algorithm has converged if E(f) ≡ maxa,i,t|f i
t (a)− f i,new

t (a)| < 1e-4.

Criterion 2. We determine that the algorithm has converged if some key theoretical mo-

ments have stabilized across iterations. In particular, we look at convergence in the distribution

of interest rates and measures of trading activity.101 Specifically, let ρpt denote the p-percentile

of the (volume weighted) distribution of interest rates at time t. Every 10 iterations of the al-

gorithm, we compute the rate percentiles ρpt for p ∈ {0.05, 0.10, 0.30, 0.50, 0.70, 0.90, 0.95}, and
then compute the error E(ρ) ≡ maxp,t|ρpt − ρp,newt |. Every 10 iterations, we also compute: the

EFFR, the participation for each bank, Pi, and the reallocation for each bank, Ri. We consider

the algorithm has converged if after 10 iterations, we have: (i) E(f) < 1e-3, (ii) E(ρ) < 1e-4, and

(iii) the errors for the EFFR, Pi, and Ri all below 1e-4. For all these error computations, we

check errors comparing results 10 iterations apart (e.g.: the EFFR this iteration compared with

the EFFR 10 iterations ago), which ensure that results are stable across algorithm iterations.

101See Section D.2 for details on computation of theoretical moments.
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The reason we sometimes use Criterion 2 is that, despite our using the trading cost ϵ in

equation (35), we sometimes observe loans that entail very small gains from trade, but still

affect the distributions {f i
t (·)}. These small-surplus trades may keep the error E(F ) above

the convergence tolerance, but have no significant effect on the distribution of rates nor in the

relevant measures of trading activity. To ensure the algorithm has stabilized, we only start

implementing Criterion 2 after 25 iterations, and check errors E(ρ), EFFR, Pi, and Ri every

10 iterations. We have found that using Criterion 1 exclusively has no significant effect on

the main results, but it typically takes longer for the algorithm to converge.

D.2 Computation of theoretical moments

Many of the statistics that we compute from model output are volume-weighted, which is the

standard way many official statistics are computed (e.g., the EFFR). In this section we provide

more details on how to perform these calculations in the theory.

Let ωij
t (a, ã) be the share of loans between banks type i ∈ N and j ∈ N with balances a ∈ Ai

and ã ∈ Aj at time t, relative to the total volume of loans in the trading-day, υ. That is,

ωij
t (a, ã) =

υ̃ijt (a, ã)

υ

where

υ̃ijt (a, ã) = (∆βi)niσjF
i
t (a)F

i
t (ã)|b

ij
t (a, ã)|,

and

υ =
∑
t

∑
i,j∈N

∑
(a,ã)∈Ai×Aj

υ̃ijt (a, ã)

is the total volume of loans in the trading day.

The EFFR is the volume-weighted mean of all daily traded rates, i.e.,

EFFR =
∑
t

∑
i,j∈N

∑
(a,ã)∈Ai×Aj

ωij
t (a, ã)ρ

ij
t (a, ã). (39)

Let υei and υri denote the values of all the loans that were extended and received, respectively,

throughout the trading day by all banks of type i ∈ N, i.e.,

υei =
∑
t

∑
i,j∈N

∑
(a,ã)∈Ai×Aj

ωij
t (a, ã)b

ij
t (a, ã)I{bijt (a,ã)>0}

υri =
∑
t

∑
i,j∈N

∑
(a,ã)∈Ai×Aj

ωij
t (a, ã)b

ij
t (a, ã)I{bijt (a,ã)<0}.
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The participation and reallocation measures are Pi = (υei +υri )/2υ, andRi = (υei −υri )/(υ
e
i +υri ),

respectively.
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E Data

This appendix discusses the data we use in the paper. Section E.1 describes the data sources,

how we merged them, and our sample selection procedure. Section E.2 describes our own

calculations of statistics that we used in the empirical and quantitative sections of the paper.

Section F gives a detailed account of the market events of September 13–20, 2019.

E.1 Reserve balances, transfers, and regulatory requirements

We used three databases for bank-level data on: (1) reserve balances and Regulation-D require-

ments, (2) high-frequency reserve transfers, and (3) Liquidity Coverage Ratio (LCR) require-

ments. We discuss each below.

E.1.1 Reserve balances and Regulation D

Bank-level end-of day balances at daily frequency were provided by the Monetary Policy Op-

erations and Analysis (MPOA) section of the Monetary Affairs Division at the Federal Reserve

Board of Governors. MPOA also supplied us the bank-level data on Regulation-D reserve

requirements for each two-week maintenance period. Reserve balances and Regulation-D re-

quirements are reported at the level of the bank holding company (and we used the bank holding

company as the relevant unit of observation throughout). MPOA reports end-of-day balances

as of 6:30 pm EST. We imputed next-day beginning-of-day balances as of 9:00 am EST with

the procedure explained in Section E.2.1.

E.1.2 Reserve tranfers

Fedwire Funds Services (Fedwire) is an electronic large-value real-time gross settlement system

operated by the Federal Reserve Banks. Fedwire participants include commercial banks, savings

banks, thrift institutions, credit unions, agencies and branches of foreign banks in the United

States, government securities dealers, government agencies such as federal or state governments,

and Government Sponsored Enterprises (GSEs, e.g., Freddie Mac, Fannie Mae, and Federal

Home Loan Banks). These institutions hold reserve balances in accounts at the Federal Reserve,

and use Fedwire to transfer reserves to other participants, e.g., to settle payments, or to lend

or repay loans of reserve balances.

Every Fedwire participant is identified by a Fedwire account number. Whenever an institu-

tion uses multiple Fedwire account numbers, we followed the guidelines from the Reserve Bank
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Operations and Payment Systems Division at the Federal Reserve Board for linking those Fed-

wire account numbers to a single bank ID. Whenever institutions with different bank IDs belong

to the same bank-holding company, we aggregated them into a single entity (since regulations,

e.g., reserve requirements, LCR and SLR requirements, and interest-on-reserves calculations,

etc., typically apply at the level of the bank-holding-company level). In a few instances, a bank

ID could not be matched to a bank-holding company. Those account numbers were excluded

from the sample. We also excluded any bank ID that did not have any fed funds trading activity

in a given year. Our sample consists of 754 Fedwire participants for the year 2006, 404 for the

year 2014, 395 for the year 2017, and 412 for the year 2019.

Having mapped Fedwire account numbers to bank-holding companies, we assigned the iden-

tity of each Fedwire sender or receiver to a bank holding company. We used the output of the

Furfine algorithm to identify the set of overnight loans from the universe of Fedwire transfers,

and treated the remaining transfers as payments unrelated to overnight borrowing and lending.

All individual payments with value lower than $10,000 between a pair of banks during a trading

day are consolidated into a single payment.

E.1.3 Liquidity Coverage Ratio

LCR regulation requires a bank to maintain (typically on a daily basis) a quantity of High

Quality Liquid Assets (HQLA) at least as large as a measure of total net cash outflows in a

30-day standardized stress scenario. If we let Hm (d) denote the quantity of qualifying HQLA

held by bank m in a trading period d, and Lm (d) denote the corresponding measure of outflows

in the stress scenario, the LCR regulation requires Lm (d) ≤ Hm (d).102

Both, Lm (d) and Hm (d) are made public by each bank at a quarterly frequency. We obtain

data on the ratio of these quantities from S&P Global Capital IQ database.103 We used SNL

Classic Data and run a Companies (Classic) screener to search for our data. We extracted

quarterly LCR (LIQUIDITY COV RATIO) data from 1990Q1 to 2021Q2. For some banks,

LCR data were missing in some quarters. For these cases, we obtained the LCR data directly

102Appendix C (Section C.2.1) describes the LCR regulation in greater detail.
103The S&P database can be accessed at: https://www.spglobal.com/marketintelligence/en/.

22

https://www.spglobal.com/marketintelligence/en/


from the bank’s website.104

We merged our balances data from MPOA (described in Section E.1.1) with the S&P

LCR data using the Replication Server System Database (RSSD) ID. (The balances data from

MPOA contains the RSSD of each bank holding company.) We then created a manual cross-

walk to match RSSDs to parent company names in the S&P database, using the National

Information Center repository from the Federal Financial Institutions Examination Council

(https://www.ffiec.gov/NPW). We always matched RSSDs to the parent bank holding com-

pany to which the LCR regulation applies. In general, this procedure implies matching the

RSSDs to the highest level parent company in the corporate structure, except for cases in

which the parent company is a sovereign government and the LCR constraint applies to the

second highest parent company level.

E.2 Empirical computations

E.2.1 Balances: beginning-of-day imputation

This section provides further details about the construction of beginning-of-day (BOD) balances

that we discussed in Appendix A.3. The BOD balances used in the paper were obtained from

the following three-step procedure for each bank:

• Step 1. We started with the end-of-day (EOD) balance for trading day d − 1 obtained

from MPOA, and calculated a “basic” measure of the BOD balance for trading day d,

by adding (subtracting) the repayments received (sent) corresponding to loans extended

(received) during trading day d.

• Step 2. From the “basic” measure of BOD balance calculated in Step 1, we calculated an

“adjusted” measure of BOD balance by subtracting the quantity of required reserves, i.e.,

the minimum level of reserves that the bank must hold during the maintenance period in

order to comply with Regulation D and the minimum LCR requirement.

104This was the case for the following three banks:

• Credit Agricole Group (https://www.credit-agricole.com/en/pdfPreview/186985)

• DNB ASA (https://ir.dnb.no/capital-framework)

• State Street Corporation (https://investors.statestreet.com/filings-and-reports/u-s-liquidity-coverage-
ratio-disclosures/default.aspx).
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• Step 3. From the “adjusted” measure of BOD balance calculated in Step 2, we calculated

a measure of “unencumbered” BOD reserve balance for trading day d, by the netting

predictable payments that take place during trading day d.

Next, we discuss each step in more detail.

Step 1: Netting repayments of previous-day loans. For each bank holding company

m in our sample, we obtained the EOD balance as of 6:30 pm EST of day d from MPOA (see

Section E.1.1), which we denote aeodm (d). For each bank m, we used the output of the Furfine

algorithm to compute the repayments to be sent and received on day d corresponding to loans

originated during day d− 1. Let receivem(d) and sendm(d) denote the amounts of reserves that

bank m will receive or send, respectively, on day d, and define the net repayment corresponding

to loans originated during day d− 1, as netm(d) ≡ receivem(d)− sendm(d). We then computed

am(d) = aeodm (d − 1) + netm(d), which is our “basic” measure of BOD balance for bank m on

day d. Finally, we computed the BOD “basic” balance for the maintenance period h as the

average of am(d) for days d ∈ h: am(h) = 1
Nh

∑
d∈h am(d), where Nh is the number of trading

days in a maintenance period h.

As mentioned in Appendix A.2 (footnote 62), for the purpose of calculating the “basic”

BOD balance, we treated GSEs differently than banks. In the case of a GSE, we did not

only net out the repayments corresponding to loans issued on day d − 1 (i.e., netm(d)), but

all transfers sent or received during trading day d—involving any counterparty, not only those

that meet the sample selection criteria described Section E.1.2. The rationale for netting all

transfers that will occur during day d to obtain the GSE’s “basic” BOD balance for day d is

that a GSE’s business model generates very predictable cash flows, so through the lens of our

theory, we regard the GSE as being able to predict all its intraday Fedwire transfers at the

beginning of the trading day.

Step 2: Subtracting reserve requirements. For each bank m in maintenance period h,

we computed “adjusted” (excess) reserves as xm(h) ≡ am(h)−a
¯
D
m (h)−a

¯
L
m (h), where a

¯
D
m (h) and

a
¯
L
m (h) denote the Regulation D and LCR reserve requirements, respectively. The bank-level

Regulation-D requirement, a
¯
D
m (h), was provided by MPOA. The reserve requirement implied

by the LCR regulation is less straightforward, as we discuss next.

As explained in Appendix C (Section C.2.1), the LCR regulation requires a bank to maintain
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(on a daily or monthly basis) a quantity of High Quality Liquid Assets (HQLA) at least as large

as a measure of total net cash outflows in a 30-day standardized stress scenario. Specifically, if

we let Hm (d) denote the quantity of qualifying HQLA held by bank m in a trading period d (a

day or a month, depending on the type of institution, see footnote 94) and Lm (d) denote the

corresponding measure of outflows in the stress scenario, the LCR regulation requires Lm (d) ≤
Hm (d). The set of qualifying HQLA includes reserves in excess of Regulation D, as well as

securities issued or guaranteed by the U.S. Treasury (and also other securities, but subject to

caps and haircuts). The fact that the LCR regulation allows banks to meet the requirement

with assets other than reserves presents a challenge when trying to identify the quantity of

reserves that bank m treats as “required” to satisfy the LCR constraint in period d, i.e., a
¯
L
m (d).

Our strategy to tackle this identification problem is to set a
¯
L
m (d) = max (0,Lm (d)−Am (d)),

where Am (d) ≡ Hm (d)−max
(
0, am (d)− a

¯
D
m (d)

)
is the quantity of qualifying HQLA in excess

of (i.e., other than) reserves net of the Regulation D requirement.105 Our proposed measure of

excess reserves, xm(h) ≡ am(h)− a
¯
D
m (h)− a

¯
L
m (h), selects the largest level of excess reserves net

of the Regulation D requirement that is consistent with the LCR constraint.

For banks that are not subject to LCR regulation (such as banks with assets below $50 bn

in our sample period), we set a
¯
L
m (h) = 0. Since GSEs are not subject to Regulation D or LCR

regulation, we set a
¯
D
m (h) = a

¯
L
m (h) = 0 for m ∈ BG. Finally, since we only have quarterly LCR

observations (see Section E.1.3), we imputed the same LCR-induced reserve requirement for all

maintenance periods within the quarter.

Step 3: Netting predictable payments. To go from the bank-level “adjusted” measure of

BOD balance calculated in Step 2, to the bank-level measure of “unencumbered” BOD reserve

balance for period h, we netted (at the individual bank level) all predictable payments that take

place during period h, as explained in Section A.3.

E.2.2 Network statistics

In this section we describe the calculations of the network statistics reported in Figure 2.106

We begin by introducing some notation. Let υemd denote the dollar value of all loans extended,

and υrmd denote the dollar value of loans received, by bank m on day d. Let υemh and υrmh

105See Section C.2.1 in Appendix C for a more detailed explanation of our strategy to identify the quantity of
required reserves induced by the LCR regulation.
106The theoretical counterparts of these computations are discussed in Appendix D (Section D.2).
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denote the dollar values of loans extended and received, respectively, during the maintenance

period h, i.e., υemh =
∑

d∈h υ
e
md and υrmh =

∑
d∈h υ

r
md. Finally, let υh =

∑
m υemh denote the

total dollar value of loans extended in maintenance period h. We compute the participation

and reallocation values by bank type, i ∈ {F,M, S,G}, as follows.

Participation rate by bank type. We computed the participation rate for bank type i ∈
{F,M,S,G} during maintenance period h as Pih =

∑
m∈i

υe
mh+υr

mh
2υh

. We then computed the

participation rate of bank type i ∈ {F,M, S,G} in a given year as Pi =
1
Nh

∑
h Pih, where Nh

denotes the number of maintenance periods in the year.

Reallocation index by bank type. We computed the reallocation index for bank type

i ∈ {F,M, S,G} during maintenance period h as Rih =
∑

m∈i υ
e
mh−

∑
m∈i υ

r
mh∑

m∈i υ
e
mh+

∑
m∈i υ

r
mh

. We then computed

the reallocation index of group i in a given year as Ri =
1
Nh

∑
hRih, where Nh denotes the

number of maintenance periods in the year.

As explained in Section A.1, the arrows from one node to another in Figure 2 represent loans

extended from banks of that type to the other. The arrow width is proportional to the volume

of trade between the bank types connected by the arrow. The node size is proportional to the

volume of trade between banks of a given type. The arrow widths and node sizes are defined

relative to the trades within a year, so they are not comparable across years. The colors of the

arrows and nodes are: light blue, dark blue, light red, or dark red, depending on whether the

volume-weighted average interest rate on the loans between the two types of banks, expressed

as a spread over the EFFR, falls in the first, second, third, or fourth quartile, respectively.

E.2.3 Kernel density estimations

We use Gaussian kernel densities to estimate the distributions of payment shocks, beginning-of-

day reserve balances, and aggregate reserve-draining shocks. For the distributions of payment

shocks, and the distribution of reserve-draning shocks, we set the smoothing parameter, h, using

a standard “rule of thumb”, namely h = 0.9min
(
σ̂, IQR

1.34

)
n−1/5, where n, σ̂, and IQR denote the

number of observations, standard deviation, and interquartile range of the sample, respectively.

For the distributions of beginning-of-day reserves we use the [iterative] methodology described

in Botev et al. (2010) to set the smoothing parameter (since they may be multimodal, as seen

in Figures 15-18).

26



E.2.4 Reduced-form estimation of the reserve demand (6)

As in Section 6.3, let st denote the EFFR-IOR spread on day t, and Qt denote the aggre-

gate quantity of reserves at the end of day t. We estimated equation (6) using a nonlin-

ear least-squares procedure. For each sample period, we estimated the vector of parameters,

ν ≡ {s, s̃, ξ,Q0}, with s̃ ≡ s− s, to solve

Ξ = min
ν

{∑
t

(st −D(Qt))
2

}
s.t. 0 ≤ s̃, 0 ≤ ξ, (40)

where D(·) is as defined in equation (6). We found the solution to (40) by following two steps.

In the first step, we did a thorough grid search: we set equally spaced grids for each parameter

in ν, computed the hypercube combining all these grids, and then evaluated Ξ for each entry

in this hypercube.107 Let νgrid be the vector or parameters that delivered the lowest value of

Ξ. In the second step, we used a Nelder-Mead optimization starting from νgrid.

E.2.5 A mapping between reserves of all banks and reserves of active banks

Let QD
t denote the quantity of total reserves on day t in the sample of all banks in the data

(e.g., the quantity of reserves shown in Figure 22). Let QM
t denote the quantity of active excess

reserves on day t that we use to calibrate our model to the year 2019 (and in the interpolation

procedure described in Appendix A.6, which also uses the year 2017 as an endpoint).108 Let T
denote a subset of trading days and let t be the cardinality of this set. For any sample

{
QD

t

}
t∈T,

define Q̄D
T ≡ 1

t

∑
t∈TQ

D
t . Similarly, for any sample

{
QM

t

}
t∈T, define Q̄M

T ≡ 1
t

∑
t∈TQ

M
t .

Our model output, e.g., the aggregate demand for reserves, is computed using a quantity of

reserves Q ∈ R constructed with the interpolation procedure described in Section A.6, which

uses Q̄M
2017 and Q̄M

2019, i.e., the average quantity of reserves in excess of LCR and Regulation D

in our subsample of active banks for the two base years. For some exercises (e.g., the top-right

panel of Figure 7) we want to show—in the same graph—the model output along with actual

107We used grid sizes of: 50 points for s, 50 points for s̃, 123 points for Q0, and 63 points for ξ. This gave a
combination of 19,372,500 values for ν. The bounds for each grid were: −0.50 and 0.01 for s, 0.00 and 1.00 for
s̃, −3×Q2019 and 3×Q2019 for Q0, and 1e− 6 and 0.10 for ξ. We always found the the optimal value for ν well
within our bounds.
108That is, {QM

t } is the time series for the aggregate quantity of reserves for the subsample of banks that were
active in fed funds trading during the years under study, net of Regulation D and LCR requirements, as explained
in Section A.3. The notion of active excess reserves arises naturally in our theory, since reserve requirements
determine incentives to hold reserves, and reserve balances at banks that are inactive in the fed funds market
are inconsequential.
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daily data observations of total reserves and interest rates, but the observations that we have

available at a daily frequency are
{
QD

t

}
t∈T, not

{
QM

t

}
t∈T. So we need a way to “transform”

each daily observation, QD
t , into an estimate of QM

t .

We adopt a transformation G, such that QM
t = G

(
QD

t ;T
)
for all t ∈ T, which satisfies two

properties for any sample T: (1) daily variation in reserves in the full sample of banks is the

same as daily variation in reserves in the subsample of banks, i.e., QM
t+1−QM

t = QD
t+1−QD

t for

all t ∈ T (this is consistent with our strategy of calibrating the slope of our model-generated

reserve demand to match the liquidity effect associated with variation in the quantity of reserves

of the full sample of banks); and (2) Q̄M
T = F

(
Q̄D

T
)
, where F is a linear function that satisfies

F
(
Q̄D

2017

)
= Q̄M

2017 and F
(
Q̄D

2019

)
= Q̄M

2017 (the subscript “2017” denotes the sample of all

trading days in the year 2017, and the subscript “2019” denotes the sample of all trading days

in the year 2019). For any sample T of trading days, we posit

QM
t = G

(
QD

t ;T
)

≡ QD
t − Q̄D

T + Q̄M
T , (41)

where

Q̄M
T ≡ ωD

T Q̄M
2019 +

(
1− ωD

T
)
Q̄M

2017, (42)

with

ωD
T ≡

Q̄D
T − Q̄D

2017

Q̄D
2019 − Q̄D

2017

. (43)

For each day t ∈ T, the transformation (41) constructs QM
t from QD

t by first subtracting

fromQD
t its sample mean, Q̄D

T , and then recentering the resulting quantity by adding an imputed

sample mean, Q̄M
T , corresponding to the subset of active banks. The imputed sample mean Q̄M

T

is defined by (42) and (43) as a convex combination of Q̄M
2017 and Q̄M

2019 (the observed sample

means for the subset of active banks in the baseline years 2017 and 2019).

Next, we verify that the mappings G and F defined by (41)-(43) satisfy the desired proper-

ties. First, notice that for any sample T, (41) implies QM
t+1 −QM

t = QD
t+1 −QD

t for all t ∈ T, so
property (1) is satisfied. Second, notice that (42)-(43) define a linear transformation, F , such

that Q̄M
T = F

(
Q̄D

T
)
, with

F(Q̄D
T ) ≡

Q̄D
2017Q̄

M
2019 − Q̄D

2019Q̄
M
2017

Q̄D
2017 − Q̄D

2019

+
Q̄M

2017 − Q̄M
2019

Q̄D
2017 − Q̄D

2019

Q̄D
T ,

which satisfies the desired property (2), i.e., F
(
Q̄D

2017

)
= Q̄M

2017 and F
(
Q̄D

2019

)
= Q̄M

2019.
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The linear mapping Q̄D = F−1
(
Q̄M

)
from the quantity of active excess reserves to the

quantity of total reserves is a reasonable approximation for relatively narrow ranges of reserve

balances (e.g., for quantities of reserves between Q̄M
2019 and Q̄M

2017). However, for some of our

quantitative exercises (e.g., Figure 9, Figure 11, and the right panels of Figure 7) we want

a mapping to transform values of Q̄M into values of Q̄D that performs well globally (i.e., for

quantities of reserves balances that are far from Q̄M
2019 and Q̄M

2017). For this reason, whenever

a figure includes a secondary horizontal axis for total reserves (i.e., Q̄D
T ) that “translates” the

active excess reserves (i.e., Q̄D
M) on the primary axis, we obtain Q̄D

T from the following quadratic

mapping:

Q̄D
T = T

(
Q̄M

T
)
≡ AQM

T +B
(
QM

T
)2

,

with

A ≡
(
Q̄M

2017

)2
Q̄D

2019 −
(
Q̄M

2019

)2
Q̄D

2017(
Q̄M

2017 − Q̄M
2019

)
Q̄M

2017Q̄
M
2019

B ≡ Q̄M
2019Q̄

D
2017 − Q̄M

2017Q̄
D
2019(

Q̄M
2017 − Q̄M

2019

)
Q̄M

2017Q̄
M
2019

.

The mapping T satisfies Q̄D
2017 = T

(
Q̄M

2017

)
, Q̄D

2019 = T
(
Q̄M

2019

)
, and T (0) = 0, and it is

consistent with the linear mapping F−1 (as defined by (42) and (43)) in the sense that for all

practical purposes, the difference between the quadratic mapping QD = T
(
QM

)
and the linear

mapping QD = F−1
(
QM

)
is very small for all QM ∈ [QM

2019, Q
M
2017].
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109Notice that QD = F−1
(
QM

)
is the secant line to the quadratic mapping QD = T

(
QM

)
through the points(

QM
2019, Q

D
2019

)
and

(
QM

2017, Q
D
2017

)
. To see that the values of the mappings F−1

(
QM

)
and T

(
QM

)
are indeed

very close for QM ∈ [QM
2019, Q

M
2017], we verify that

arg max
Q∈[QM

2019,Q
M
2017]

[
F−1 (Q)− T (Q)

]
=

QM
2019 +QM

2017

2
≡ Q∗

M ,

and

F−1 (Q∗
M )− T (Q∗

M )

T (Q∗
M )

=
14.21

1897.05
≈ 0.0075.
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F Events of September 13–20, 2019

In Section 8 we use our quantitative theory to analyze the fed-funds rate spikes of September

2019. In this section we give more background on the associated reserve-draining shocks, and

the monetary-policy interventions that followed these rate spikes.110

The events unfolded as follows. On Friday, September 13 the beginning-of-day supply of

reserves was about $1.5 tn, and the EFFR printed at 214 bps. In the top panel of Figure 11,

September 13 is the dark dot that sits on the demand for reserves generated by the theory—

well within the EFFR target range. On Monday, September 16 the beginning-of-day supply of

reserves was $51.5 bn lower than on the previous trading day (due to reserve-draining shocks

that occured throughout Friday, September 13), and the EFFR printed at 225 bps (the upper

limit of the target range). In the top panel of Figure 11, September 16 is the rightmost dark

dot that sits on the upper limit of the target range for the EFFR. On Tuesday, September

17 the beginning-of-day supply of reserves was $65.72 bn lower than on the previous trading

day (due to reserve-draining shocks that occured throughout Monday, September 16), and the

EFFR printed at 230 bps (5 bps above the upper limit of the target range). In the top panel

of Figure 11, September 17 is the uppermost dark dot. Following an overnight repo operation

that injected $53 billion on Tuesday, September 17, the beginning-of-day supply of reserves on

September 18 was $46.3 bn higher than on the previous day, and the EFFR fell to 225 bps.111

The morning of Tuesday, September 17 was the first time since the GFC that the Desk

conducted an open-market operation to manage the EFFR. That Tuesday afternoon the Desk

announced it would conduct an overnight operation at 8:15 a.m. on Wednesday, September 18.

This operation injected $75 bn, which contributed to the beginning-of-day supply of reserves

on Thursday, September 19, being $3.67 bn higher than the previous day. Similar operations

were used to inject $75 bn every day until the end of the week. The EFFR printed at 190 bps

on September 19 and September 20.112

110Table 2 summarizes the main facts. Most of the events we describe in this section are based on the detailed
accounts provided Afonso et al. (2020a) and Anbil et al. (2020).
111On Monday afternoon (2019/09/16), in response to the observed upward pressure on the EFFR, the Desk

announced an overnight repo operation to be conducted at 9:30 AM on Tuesday (2019/09/17), offering up to
$75 billion against Treasury, agency, and agency MBS collateral, of which only $53 bn were subscribed.
112On Thursday, September 19, the Federal Reserve also made adjustments to administered rates and the EFFR

target range. The ONRRP was reduced from 200 bps to 170 bps, the IOR from 210 bps to 180 bps, and the
DWR from 275 bps to 250 bps. The lower limit of the EFFR target range was reduced from 200 bps to 175 bps,
and the upper limit was reduced from 225 bps to 200 bps. On the morning of Friday, September 20, the Desk
announced a series of operations over the quarter-end, which included three two-week operations covering the
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F.1 JPM earnings call for the period ending September 30, 2019

In this section we report the key excerpts of the earnings call of October 15, 2019, in which

Jamie Dimon, Chairman and CEO of JPMorgan Chase (JPM), answered questions about why

JPM was not more active lending in money markets during the week of September 16, 2019.

Question: Glenn Schorr (Analyst, Evercore ISI)

Curious your take on everything that went on in the repo markets during the quarter,

and I would love it if you could put it in the context of maybe the fourth quarter

of last year. If I remember correctly, you stepped in in the fourth quarter, saw

higher rates, threw money at it, made some more money, and it calmed the markets

down. I’m curious what’s different this quarter that did not happen, and curious

if you think we need changes in the structure of the market to function better on a

go-forward basis.

Answer: Jamie Dimon (Chairman and CEO, JPM)

So, if I remember correctly, you got to look at the concept of – we have a checking

account at the Fed with a certain amount of cash in it. Last year we had more

cash than we needed for regulatory requirements. So when repo rates went up, we

went from the checking account, which [ph] was paying (00:14:10) IOER into repo.

Obviously makes sense, you make more money. But now the cash in the account,

which is still huge – it’s $120 billion in the morning and goes down to $60 billion

during the course of the day and back to $120 billion at the end of the day – that

cash, we believe, is required under resolution and recovery and liquidity stress testing.

And therefore, we could not redeploy it into repo market, which we would have been

happy to do. And I think it’s up to the regulators to decide they want to recalibrate

the kind of liquidity they expect us to keep in that account. Again, I look at this as

quarter-end and daily overnight operations of $75 billion through October 10. The September 16–17 event seem
to have had lasting an impact on the conduct of monetary policy. As Afonso et al. (2020a, p. 24) recount:

On October 11, 2019, the FOMC announced its intention to maintain an ample supply of reserve
balances at or above the level that prevailed in early September. The FOMC instructed the Desk to
purchase Treasury bills at least into the second quarter of 2020 (and to continue repo operations)
in order to supply reserves and mitigate money market pressures that might impede policy imple-
mentation. The goal of the bill purchases was to ensure the smooth functioning of money markets
at the current monetary policy stance, not to change the monetary policy stance.

For details, see https://www.federalreserve.gov/newsevents/pressreleases/monetary20191011a.htm.
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technical; a lot of reasons why those balances dropped to where they were. I think a

lot of banks were in the same position, by the way. But I think the real issue, when

you think about it, is what does that mean if we ever have bad markets? Because

that’s kind of hitting the red line in the Fed checking account, you’re also going to

hit a red line in LCR, like HQLA, which cannot redeployed either. So, to me, that

will be the issue when the time comes. And it’s not about JPMorgan. JPMorgan

will be fine in any event. It’s about how the regulators want to manage the system

and who they want to intermediate when the time comes.

Question: Erika Najarian (Analyst, Bank of America Merill Lynch)

Yes, good morning. My first question is a follow-up to Glenn’s question. As we think

about the crosscurrents of resolution planning, LCR, and liquidity stress testing,

could you help us – what is the level of excess deployable cash at JPMorgan?

Answer: Jamie Dimon (Chairman and CEO, JPM)

As I said, we have $120 billion in our checking account at the Fed, and it goes down

to $60 billion and then back to $120 billion during the average day. But we believe

the requirement under CLAR and resolution and recovery is that we need enough

in that account, so if there’s extreme stress during the course of the day, it doesn’t

go below zero. If you go back to before the crisis, you’d go below zero all the time

during the day. So the question is, how hard is that as a red line? Was the intent

of regulators between CLAR and resolution to lock up that much of reserves in the

account with Fed? And that’ll be up to regulators to decide. But right now, we have

to meet those rules and we don’t want to violate anything we’ve told them we’re

going to do.

For a full transcript of the call, visit: https://tinyurl.com/29scwszt.
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G Aggregate demand for reserves: alternative estimations

Our baseline reduced-form demand estimation in Section 6.3 consisted of estimating the pa-

rameters (s, s, ξ,Q0) in (6) by nonlinear least squares. The estimated demand fits the data

well, but performs poorly for out-of-sample levels of reserves: Notably, the estimated demand

predicts the EFFR-IOR spread would remain unchanged if total reserves were drained from

$1 tn to zero. In this section we consider several alternative econometric specifications of the

reduced-form estimation of the aggregate demand for reserves. Section G.1 tries to improve

on the empirical model of Section 6.3 by imposing theoretically-motivated constraints on the

estimation. Section G.2 considers a semi-log specification that is common among practitioners.

Section G.3 considers a variant of the semi-log specification.

All the alternative reduced-form estimation strategies we consider support the two main

lessons of Section 6.4. First, our theory identifies a set of structural “shifters” of the aggregate

demand relationship that can help with the identification problems that pervade all reduced-

form econometric estimations of the aggregate demand for reserves. Second, our quantitative-

theoretic approach delivers estimates of the demand for reserves that fit available data as

well as the reduced-form approaches, but these approaches have very different out-of-sample

predictions. Specifically:

(a) For large levels of reserves, the slope of the quantitative-theoretic demand becomes virtu-

ally flat (e.g., $1.3 tn of total reserves), while the slopes of the reduced-form econometric

estimates tend to remain positive even for very large reserves (e.g., even for total reserves

in excess of $2.5 tn).

(b) For relatively low levels of reserves, the model-generated demand becomes quite steep

for total reserves between $600 bn and $340 bn, and flattens for levels lower than $340

bn. In contrast, in the specifications of Sections G.2 and G.3, the slopes of the reduced-

form demand estimates increase exponentially as total reserves decrease, and become

unreasonably large at low (e.g., pre-GFC) levels of reserves.

G.1 NLS estimation of (6) with constraints motivated by theory

In this section we try to improve the reduced-form empirical model we used in Section 6.3 by

imposing two constraints on the estimation that are grounded on elementary theory. Specifically,

we redo the NLS estimation of (6) but imposing that s should equal the largest value of ῑw − ιr
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in the relevant sample, and that s should equal the lowest value of ῑo− ιr in the relevant sample

(with ῑw, ῑo, and ιr as defined in Section 4). The results are reported in Figure 23, which

is analogous of Figure 7. The global fit of this reduced-form approach looks somewhat more

credible than the unconstrained version in Figure 7; at least the EFFR-IOR spread now rises

as the quantity of reserves falls below $1 tn. However, even after we control by IOR-ONRRP

regime, as we do in the bottom-left and bottom-right panels of the figure, the estimated demands

are still quite different from our quantitative-theoretic estimates. To illustrate, compare the

quantitative-theoretic estimate in the top-right panel with the reduced-form estimate in the

bottom-right panel for the sample with IOR-ONRRP spread equal to 10 bps. In the former,

the slope of the demand becomes flat somewhere above $1.3 tn of total reserves, while the slope

of the latter remains positive even if total reserves exceed $2.5 tn. The behavior is also quite

different for relatively low levels of reserves: the model-generated demand becomes quite steep

at about $600 bn of total reserves, while the slope of the reduced-form estimate does not vary

much with the quantity of reserves (even as the quantity of total reserves approaches zero).

G.2 A semi-log specification

In this section we consider the following semi-log specification for the demand for reserves:

st = a+ b ln(Qt), (44)

where st denotes the EFFR-IOR spread on day t and Qt denotes the aggregate quantity of

reserves at the end of day t. We estimate the parameters a and b by ordinary least squares

(OLS); the results are reported in Figure 8.

The main points we made in Section 6.3 still hold. First, comparing the top-left and bottom-

left panels of Figure 8 we see that incorporating the minimal theoretical insight that changes in

the IOR-ONRRP spread act like demand shifters, makes a big difference for the global estimates

of the demand for reserves. Second, even after we control by IOR-ONRRP regime, as we do

in the bottom-left and bottom-right panels of the figure, the estimated demands are still quite

different from our quantitative-theoretic estimates. To illustrate, compare the quantitative-

theoretic estimate in the top-right panel with the reduced-form estimate in the bottom-right

panel for the sample with IOR-ONRRP spread equal to 10 bps. According the the former, the

slope of the demand becomes flat somewhere above $1.3 tn of total reserves, while the slope

of the latter remains positive even if total reserves exceed $2.5 tn. The behavior is also quite
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different for relatively low levels of reserves: the model-generated demand becomes quite steep

at about $600 bn of total reserves, but then flattens at about $340 bn. In contrast, the slope

of the reduced-form estimate increases exponentially as total reserves decrease, and eventually

becomes unreasonably large.

G.3 The López-Salido and Vissing-Jorgensen (2023) specification

In this section we consider the reduced-form specification for the demand for reserves proposed

in López-Salido and Vissing-Jorgensen (2023), who assume

st = a+ b ln(Qt) + c ln(Dt), (45)

where st denotes the EFFR-IOR spread in period t, Qt denotes the aggregate quantity of

reserves in period t, and Dt is a measure of bank deposits in period t.113 We stimate the

parameters a, b, and c by OLS; the results are reported in Figure 24. The demand estimates

are very similar to the ones we obtained in Section G.2 and reported in Figure 8, so the main

points we made about the specification (44) also hold for (45).

113The baseline measure of Dt in López-Salido and Vissing-Jorgensen (2023) is “DPSACBW027SBOG” (De-
posits, All Commercial Banks) from https://fred.stlouisfed.org.
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H Quantitative analysis for the pre-GFC-regulation regime

Our quantitative analysis in the body of the paper focuses on the current post-GFC monetary-

policy framework. For completeness, and because the pre-GFC period is of historical interest,

in this section we also study the pre-GFC framework. The pre-GFC and post-GFC frameworks

differ in two ways. First, the quantity of excess reserves was close to zero in the former, but

is very large in the latter. Second, as discussed in Section A, regulations introduced after the

GFC have affected banks’ payoffs from fed funds trading. For this reason, in this section we

recalibrate the model for a base year before the GFC, which we choose to be 2006.114

H.1 Calibration

We set ιw to match the prevailing DWR, and ιo = 0 (since there was no ONRRP facility in

2006). The remaining nine parameters, ιr and {βi, κi}i∈N, are calibrated so that the equilibrium

of the model matches the following nine empirical moments: (i) effective fed funds rate115;

(ii)-(v) reallocation indices {Ri}i∈N (as defined in Section A.1); (vi)-(viii) participation rates

{Pi}i∈N\{F} (as defined in Section A.1)116; (ix) empirical estimates of the “liquidity effect” (at

the average level of aggregate reserves outstanding in the base year, as reported in Section A.5).

Table 3 reports the parameter values, empirical targeted moments, and the corresponding

theoretical moments for the 2006 calibration. Banks of type F , M , and S, accounted for

about 0.5%, 3%, and 95%, of all the institutions that were active in the fed funds market

114Our main motive for recalibrating the model is that the trading network, which in our theory is represented
by the parameters {βi, κi}i∈N, may not be stable across policy regimes. For example, it is reasonable to imagine
that the trading patterns represented by the type-specific meeting rates may change in response to regulatory
constraints, in particular those post-GFC regulations that increased the cost of borrowing, and therefore the cost
of intermediating fed funds. We use 2006 as the baseline year for the pre-GFC period for two reasons. First,
policy rates and total reserves remained stable for most of that year, and it was the last “normal” year before
the GFC that spurred the policy interventions that changed the landscape of the fed funds market. Second, the
2006 calibration will allow us to assess the model fit in a pre-GFC-regulation environment, and it will also allow
us to test the quantitative predictions of the theory as we vary the level of aggregate excess reserves from near
zero (the level they had during 2006) to $2.689 tn (the level they reached for all the banks in our sample in 2014,
which was the last pre-GFC-regulation year).
115Our calibration strategy uses the EFFR as a calibration target unless the Federal Reserve pays interest on

reserves (IOR) in the base year, in which case we simply set ιr to match the IOR. For example, the IOR was
2.35% per annum in May-July 2019, so we set ιr = 0.0235/360 in the 2019 calibration. The Federal Reserve did
not pay IOR before October 9, 2008, so in the 2006 calibration we regard ιr as a proxy for a bank’s unmodelled
opportunity cost of lending reserves in the fed funds market, and calibrate it internally so that the average
(volume-weighted) interest rate in the model is equal to 5.25% per annum, which was the EFFR rate prevailing
during the second half of 2006.
116The participation rate of type F banks is not an explicit calibration target because it is implied by the

participation rates of the other three types, since
∑

i∈N Pi = 1.
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in 2006, respectively.117 To interpret the frequencies of payment shocks, {λi}i∈N, recall that
λi represents the probability that a bank of type i receives a payment shock in a one-second

time interval, so for example, λF = 0.901 implies a bank of type F receives a payment shock

approximately every 1.1 seconds, on average. Similarly, λM = 0.402 implies a bank of type M

receives a payment shock approximately every 2.5 seconds, and λS = 0.007 implies a bank of

type S receives a payment shock approximately every 2.38 minutes, on average. The rate ιw

corresponds to a DWR equal to 6.25% per annum, which was in effect in the second half of

2006. The calibrated value of ιr is 4.81% per annum.118

The frequency of trade, βi, is the probability a bank of type i contacts a trading partner

during a 42-second time interval. Thus, the calibrated values {βi}i∈N for 2006 imply that banks

of type F , M , S, and G trade fed funds approximately every 1.75 minutes, 8 minutes, 20

minutes, and 3.5 minutes, respectively. The calibration also ensures that, when computed in

the neighborhood of zero excess reserves, the magnitude of the “liquidity effect” in the theory

is within the range of the empirical estimates reported in Section A.5 (i.e., about a 1.7 bp

increase in the fed funds rate per $1bn reduction in the aggregate quantity of reserves).119

The borrowing costs {κi}i∈N, which proxy for institutional and regulatory considerations that

affect banks’ incentives to buy fed funds, are nill for banks of type F , M , and S in the 2006

calibration.120

H.2 Validation

In this section we report the model fit of empirical observations that were not targeted in the

calibration. We organize the material in two sections: the first focuses on the cross-sectional

117The main change in the bank population between 2006 and 2019 is the reduction in the total number of
active banks in our sample, mostly due to the fact that almost half of the banks of type S that were fed funds
market participants in 2006 did not trade fed funds during 2019.
118For comparison, 4.81% per annum is the 0.5 percentile of the volume-weighted distribution of rates observed

in the second half of 2006. That is, only half of one percent of the fed funds traded in the second semester of
2006 had a rate below 4.81%, so we regard 4.81% as a reasonable proxy for the unmodelled opportunity cost
of an alternative use of reserves. We focus on July–December because in that period the administered rates
(i.e., the Discount-Window rate and the EFFR target) were constant and equal to the rates targeted in the 2006
calibration (the administered rates had been gradually increasing in the first half of 2006).
119Figure 25 shows the magnitude of the liquidity effect in the model calibrated to 2006 (extracting reserves

using the procedure described in Section A.6), as well as the confidence bands for the estimates from Carpenter
and Demiralp (2006) reported in Section A.5. The model-generated liquidity effect is within the range of empirical
estimates.
120In every calibration the value of κG is set large enough to match the observation that GSEs essentially do

not borrow in the fed funds market.
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distribution of loan rates, and the second on the main features of the fed funds trading network.

H.2.1 Distribution of interest rates

Figure 26 shows the empirical and theoretical cumulative distribution functions of bilateral

fed funds rates in the year 2006 (expressed in percent per annum).121 The model delivers a

reasonable fit for the distribution of bilateral fed funds rates, which was not a calibration target.

H.2.2 Fed funds trading network

Figure 27 shows the empirical fed funds trading network for the year 2006 (top panel) and the

corresponding trading network generated by the model for the 2006 calibration (bottom panel).

As explained in Section A.1, these network plots show the location of the four bank types in

the coordinate axes defined by the reallocation index, Ri, and the participation rate, Pi, and

convey information on the sizes of the flows of reserves associated with fed funds lending across

and within bank types, as well as on the average interest rates on the underlying loans.122

The theoretical network matches several characteristics of the empirical one. For example,

it replicates quite well the direction and volume of the loans between bank types (represented

by the direction and width of the arrows between the nodes). In this regard, one shortcoming of

the model is that it underpredicts the volume of loans within bank types S and M . The model

is consistent with the empirical facts that banks of type S lend to each other at relatively high

rates, while banks of type F can borrow at relatively low rates from banks of type M , S, and

GSEs. In terms of shortcomings, the model predicts that banks of type S borrow at relatively

high rates from GSEs, that loans between banks of type F carry relatively low rates, and that

loans between banks of type M carry relatively high rates, as do loans from type F to type M ,

but these predictions do not match the empirical patterns.

121The empirical interest rates for 2006 are from the sample period July–December because throughout that
period the Discount-Window rate and the EFFR target were constant and equal to the rates targeted in the
2006 calibration. To obtain the equilibrium rates for 2006, the model is calibrated as in Table 3.
122In comparing the top and bottom panels of Figure 27, note that the positions of the four nodes in Ri-Pi

space have been used as calibration targets, the remaining statistics that shape these network representations
were not targeted in the calibration. This includes the node sizes (each of which is proportional to the volume
of trade between banks of a given type), the direction of each arrow (which indicates which bank type lends),
the width of each arrow (which is proportional to the volume of trade between the bank types connected by
the arrow), the colors of the arrows and nodes (which are light blue, dark blue, light red, or dark red, if the
volume-weighted average interest rate on the loans between the two types of banks, expressed as a spread over
the EFFR, falls in the first, second, third, or fourth quartile, respectively).
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H.3 Aggregate demand for reserves

Consider the model calibrated to the year 2006, as described in Table 3, but with ιw =

0.0075/365 and ιr = 0.0025/365, to match the DWR and IOR in the year 2014. Then, us-

ing the notation introduced in Section A.6, let y0 = 2006 and y1 = 2014, i.e., y0 and y1

represent the years 2006, and 2014, respectively, with n̄i
2014 and F̄ i

2014 given by the estimates re-

ported in Section A.3. Construct a grid, G ⊂ R for ω, and for each ω ∈ G, use the interpolation

procedure described by (9) and (10) to generate the sample
{
(n̄i

yω
, F̄ i

yω
)
}
(i,ω)∈N×G. For each

pair (n̄i
yω
, F̄ i

yω
) of elements of this sample, use the model to compute the corresponding equilib-

rium value-weighted fed funds rate, which we denote ι∗yω
, and let Qyω ≡

∑
i∈N n̄i

yω

∫
adF̄ i

yω
(a).

This procedure delivers a sample of pairs,
{
(Qyω , ι

∗
yω
)
}
ω∈G, which we represent with the map-

ping ι∗yω
= D(Qyω ; Π). This mapping, which we interpret as the aggregate demand for reserves

generated by the theory, is shown in Figure 28.123

123We use 2006 as an endpoint for our interpolation procedure since it was the last year of the scarce-reserve
regime that prevailed until the GFC. We use 2014 as the other endpoint because it is the year when the quantity
of reserves achieved its maximum historical level of the pre-2020 era. By varying ω on [0, 1] we can use (11) to
span any aggregate level of excess reserves between 0 (roughly the pre-GFC level prevailing in 2006) and $2.7 tn
(roughly the level achieved in 2014).
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Figure 27: Empirical and theoretical fed funds trading networks for 2006.
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