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Abstract

Estimating a forward-looking monetary policy rule by the Generalized Method
of Moments (GMM) has become a popular approach since the influential pa-
pers by Clarida, Gali, and Gertler (1998, 2000). We re-examine estimates of the
Federal Reserve reaction function using several GMM estimators and a Maxi-
mum Likelihood (ML) estimator. First, we show that, over the baseline period
1979-2000, these alternative approaches yield substantially different parame-
ter estimates. Using Monte-Carlo simulations, we show that the finite-sample
GMM bias can only account for a small part of the discrepancy between es-
timates. We find that this discrepancy can more plausibly be rationalized by
the serial correlation of the policy shock, causing mis-specification of GMM
estimators through lack of instrument exogeneity. This correlation pattern is
related to a shift in the reaction-function parameters in 1987. Re-estimating the
reaction function over the 1987-2000 period produces GMM estimates which
are very close to the ML estimate.
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1 Introduction

According to the benchmark Taylor rule, central banks set the short-term interest rate
in proportion of the inflation rate and the output gap. Since Taylor’s (1993) promi-
nent contribution, an abundant empirical as well as theoretical literature has claimed
that central banks may have a forward-looking behavior (Clarida and Gertler, 1997,
Clarida, Gali, and Gertler, 1998, 2000, Batini and Haldane, 1999). This assumption
requires the use of an adequate estimation method to overcome the presence of ex-
pected inflation in the policy rule. Following the influential work by Clarida, Gali,
and Gertler (1998), a large number of studies have thus use the Generalized Method
of Moments (GMM) to estimate forward-looking reaction functions.!

This paper re-examines the estimation of the Federal Reserve forward-looking pol-
icy rule and presents some original empirical results. While this topic has been yet
widely studied, there are at least two motivations for our additional investigation.
First, a large body of research over the last decade has analyzed the properties of
GMM estimators. It has produced numerous results which have so far not been incor-
porated in the estimation of policy rules. In particular, a large number of papers have
studied the small-sample properties of GMM estimators, in very different contexts
(see the 1996 special issue of the JBES, e.g., Andersen and Sgrensen, 1996, or Hansen,
Heaton and Yaron, 1996). These papers provided evidence that GMM estimators may
be strongly biased and widely dispersed in small samples. Fuhrer, Moore, and Schuh
(1995) also pointed out the poor small-sample performances of GMM as compared
to those of Maximum Likelihood (ML). In addition, several alternative GMM esti-
mators have been proposed (Ferson and Foerster, 1994, and Hansen, Heaton, and
Yaron, 1996), which are shown to have very different small-sample properties. As
well, alternative computation procedures for the GMM weighting matrix are likely to
provide contrasted results (e.g., Andrews and Monahan, 1992, and Newey and West,
1994). One of our aims is to re-examine estimates of the Federal Reserve reaction
function in light of these developments. The forward-looking reaction function may
be seen as an original field for investigating GMM properties.

A second strong motivation to investigate the Federal Reserve reaction function
is the issue of parameter stability. The tenures of Paul Volcker (1979-87) and Alan
Greenspan (since 1987) as chairman of the Board of Governors of the Federal Re-
serve System have been characterized by two very contrasted subperiods in terms of
interest rate movements, but no consensus has so far emerged on whether these two
eras represent a single policy regime. Some authors argued that there is no significant
difference in the way monetary policy is conducted since Volcker was appointed chair-
man in 1979. In particular, Clarida, Gali, and Gertler (2000) (henceforth CGG) found
that during the Volcker-Greenspan period, the Federal Reserve adopted a proactive
stance toward controlling inflation. Other authors (Judd and Rudebusch, 1998, Rude-
busch, 2001) concentrate on Greenspan’s tenure. The response to expected inflation
is typically found to be much lower over the recent period, whereas the output gap

Examples include Mehra (1999), Clarida, Galf, and Gertler (2000), Orphanides (2000, 2001),
Rudebusch (2001) for US data, or Angeloni and Dedola (1999), Peersman and Smets (1999), Gerlach
and Schnabel (2000), Nelson (2000), and Faust, Rogers, and Wright (2001) for European data.



becomes a significant determinant of monetary policy. Estimations in this paper are
found to provide some insights on this issue.

Our approach and an outline of the paper are the following. First, we estimate the
forward-looking reaction function using three alternative GMM estimators: the stan-
dard “two-step” GMM, and the more recent “iterative” and “continuous-updating”
estimators. We consider different procedures for computing the GMM covariance ma-
trix as well. GMM estimators are compared to the alternative ML estimator. The
ML approach involves the estimation of a structural model of the economy, and has
seldom been used in the present context.? For this purpose, we use a version of the
Rudebusch and Svensson (1999) model. Over the 1979-2000 period, we find that these
alternative estimation approaches provide very contrasted estimates of the reaction
function (section 3). Then, the finite-sample properties of GMM and ML estimators
of the reaction function are compared using Monte-Carlo simulations. We focus on
explaining the observed discrepancy between parameter estimates. T'wo explanations
are considered: finite-sample biases and model mis-specification. Our evidence sug-
gests that the discrepancy between parameter estimates can be explained by the serial
correlation of residuals, which induces lack of exogeneity of instruments (section 4).
We further claim that serial correlation is related to a shift in the reaction-function
parameters. We provide evidence of a structural change in the reaction-function pa-
rameters over the period. Estimates over the 1987-2000 period are found to be re-
markably close one to each other. The output gap turns out to play a significant role
in monetary policy rules over the recent period, providing a major source of structural
change. In contrast, we obtain that the inflation parameter did not change over the
whole period, and is estimated at a much lower value than claimed in some recent
studies (section 5). We further show that these results are robust to the macroeco-
nomic model chosen to estimate the reaction function (section 6). As a prelude to
estimation results, section 2 reviews the specification of the monetary policy reaction
function. Additional details on estimation procedures are relegated to an Appendix.

2 The forward-looking reaction function

According to the baseline policy rule proposed by Taylor (1993), the central bank is
assumed to set the target for the nominal short-term interest rate (i;) as a function
of the (four-quarter) inflation rate (7;) and the output-gap measure (y;):

g =1+ B (T — ) + yye (1)

where 7* is the long-run equilibrium nominal interest rate and 7* is the inflation target.
(The output-gap target is assumed to be zero.) The response to expected inflation
(B) is a crucial parameter, since in standard macroeconomic models policy rules with
B3 > 1 will be stabilizing (Taylor, 1999b, and in the context of forward-looking models,
Kerr and King, 1996, or Clarida, Gali, and Gertler, 2000).

20ne notable exception is Fuhrer (1997), whose study nevertheless favors a backward-looking
specification for the policy rule.



The Taylor rule has received a widespread attention in the empirical literature.
In particular, it has been found to provide a rough description of US monetary policy
during the Volcker and Greenspan tenures (Taylor, 1993, 1999a, Judd and Rudebusch,
1998). However, most empirical studies investigated “modified” Taylor rules. First,
the Federal Reserve has been found to smooth changes in interest rates. Several
motivations for such an interest-rate smoothing have been proposed (Woodford, 1999,
or Sack and Wieland, 2000). For instance, facing uncertainty concerning the model’s
parameters, it is optimal for the central bank to adjust interest rates only gradually.
Therefore, we specify the policy rule as a partial-adjustment model, in which the
short-term rate adjusts gradually to its target i}, defined by equation (1):

i =p(L)ira+ (1= p(1)ig + 1, (2)

where 7, is a random policy shock and p (L) = p; + pyL+ ...+ p,L" . p(1) measures
the degree of interest-rate smoothing. We consider below one or two lags in the
interest-rate dynamics, depending on the estimation period.?

Second, some authors, following Clarida, Gali, and Gertler (1998, 2000), have
adopted a forecast-based specification of the Taylor rule, in which the central bank
sets the level of interest rate as a function of expected inflation and output gap. Several
authors have claimed that such a forward-looking reaction function is consistent with
the observed behavior of central banks over the recent period (Clarida and Gertler,
1997, Clarida, Gali, and Gertler, 1998, 2000, Mehra, 1999, Orphanides, 2001).* Most
central banks explicitly claim that they do not only consider past or current eco-
nomic conditions, but they also include economic forecasts in their macroeconomic
condition statement. In addition, from a theoretical viewpoint, that policy rules
should be forward-looking has been advocated by Svensson (1997) and Batini and
Haldane (1999). Therefore, a large number of recent studies estimate the following
specification, which incorporates the expected inflation rate and output gap:

it =p (L)1 + (1= p(1) (" + B(EaTrra — ) + YEr1Yea) + 1y (3)

where F;_; denotes the expectation operator conditional on the information set avail-
able at date ¢t — 1. The interest rate i; is set on the basis of information available at
date t — 1,to account for the fact that current inflation and output gap are not ob-
served in real time by the central bank. The information set at date ¢ — 1 contains
the lagged values of the Funds rate, inflation, and the output gap up to t — 1.5 We
assume that the central bank reacts to the annual inflation rate over the following

3Recently, Rudebusch (2001) has argued that an alternative representation of the reaction func-
tion is a non-inertial rule with serially correlated shocks. As we will show in section 4.2, the bias we
obtain in parameter estimates is mainly related to serial correlation in the residuals of the partial-
adjustment model.

4Fair (2001) strongly rejects the forward-looking specification for the Federal Reserve reaction
function. However, he uses a different specification from the one considered in other studies.

To some extent, even this assumption is questionable, since the output gap is measured precisely
after several quarters only. In this vein, Orphanides (2000) claims that monetary policy during the
tenure of Arthur Burns as Federal Reserve chairman appears non-optimal a posteriori essentially
because estimates of the output gap have been dramatically revised since the end of the seventies.



four quarters, whereas it reacts to the output gap for the next quarter. Equation (3)
is one of the baseline specifications estimated by Clarida, Gali, and Gertler (2000),
Orphanides (2001), or Rudebusch (2001).

Estimating equation (3) provides estimates of the response to expected inflation
and output gap in the monetary policy rule and the speed of adjustment to the target
;. The long-run inflation target 7* is not identified, however, since the equation in
regression form is written as

i =p(L)ira+ (1= p 1) (BETra + vE 1y + @) +1, (4)

where the constant term is equal to a = * — 7% = r* + (1 — @) 7%, with r* =
1* — 7* the equilibrium real rate. The constant « has no specific interpretation and
no sign restriction on this parameter is binding. However, since 3 is larger than 1 in a
stabilizing monetary policy rule, the constant term « is expected to be lower than the
equilibrium real rate, provided the inflation target 7* is positive. Furthermore, though
r*and 7* are not separately identifiable in a single-equation approach, an estimate of
the inflation target can be obtained if one assumes a value for r* (for instance, the
sample average real rate). This is the restriction imposed in most papers using GMM
approach. Alternatively, an estimate of the equilibrium real rate can be obtained
from an auxiliary model. For instance, in the context of our ML estimation (see
section 3.3 below), the I-S curve can be used to estimate the equilibrium real rate.

3 The Federal Reserve reaction function from 1979
to 2000: evidence from alternative estimators

3.1 Data

We consider the Federal Reserve monetary policy over the period 1979:Q3-2000:Q3.5
We use quarterly data, drawn from the OECD databases BSDB and MEI. The Federal
funds rate is used as the monetary policy instrument. Inflation is defined the rate of
growth of the GDP deflator (denoted F;), so that m; = 400 (In (P;) — In (P;—;)) and
T = %Z?:o me—;. Output gap is defined by the percent deviation of real GDP (Q;)
from potential GDP (Q5), i.e. y = 100 (In(Q¢) —In (Q5)). Following a number of
recent studies (CGG, Rudebusch, 2001), we use the output-gap series constructed
by the Congressional Budget Office (CBO).” Note that, in line with most of the
reaction-function literature, we maintain the assumption that the nominal rate and
inflation are stationary. Although empirical evidence is not clear-cut, stationarity is
an assumption of most theoretical models of monetary policy rules. In section 5, we
introduce the possibility of a shift in the long-run equilibrium nominal interest rate
and in the target inflation rate in 1987:Q3.

6While our data ends in 2001:Q3, our estimates end in 2000:Q3, because GMM estimates require
four leads of the inflation rate.

"We also used an output-gap measure computed as the percent deviation of GDP from a linear
trend. We obtained essentially the same results, except that the output-gap parameter turns out to
be lower and less often significant than with the CBO measure.



Our sample period covers the tenures of Paul Volcker (1979:Q3-1987:Q2) and
Alan Greenspan (1987:Q3 up to now). In this first stage, we assume that parameters
of the reaction function are stable over this period. This assumption, however, is
controversial. Statistical evidence in favor of stability of the reaction function within
this sample is mixed: Estrella and Fuhrer (1999) find that stability of parameters
cannot be rejected. In contrast, Judd and Rudebusch (1998) reject stability, though
at the 7 percent significance level, while Rudebusch (2001) and Orphanides (2001)
focus on Greenspan’s tenure. Intermediate results are found by CGG, who report
evidence of instability in the autoregressive parameter only. Also, over a very long
sample, starting from the mid-fifties, Fair (2001) finds that the parameters of the
Federal Reserve reaction function are stable when excluding the 1979-82 period. In
section 5.1, we do address the issue of stability in the policy-rule parameters.

3.2 GMM estimates

Estimating the forward-looking reaction function with OLS, by substituting expected
values of inflation and output gap with the actual values, would provide inconsis-
tent estimators because of two problems.® First, since the expected inflation (output
gap) is measured with error by observed inflation (output gap), we face an error-
in-variable problem. A bias in parameter estimates occurs because the error term
et =m—(1—=pQ)) [B(Ttra — Et—1Ttr4) + ¥ (Yt+1 — Ei—1Ye11)] is correlated with some
explanatory variables, namely the future inflation rate and output gap. Second, since
the current policy shock 7, is likely to affect future inflation and output gap, there is
an endogeneity bias. Both problems can be overcome by the GMM. This technique
only requires that the error term ¢, is orthogonal to a vector of instruments Z; ; in
the information set available at date t — 1, so that F [e;Z; 1] = E[g; (0)] = 0, where
0 denotes the vector of unknown parameters. An efficient GMM estimator of 6 is
obtained by minimizing, with respect to 6, the expression

g(0) ()" 3(0)

where g (6) = £ Y/, g: (8) and Sr is a consistent estimator of the covariance matrix
of g; (). Provided instruments are correlated with endogenous regressors and uncor-
related with the error term, GMM estimators are strongly consistent, and asymptoti-
cally normal (Hansen, 1982). This technique has been applied to rational-expectation
models along the lines of Cumby, Huizinga, and Obstfeld (1983), Hansen and Sin-
gleton (1982), and Hayashi and Sims (1983). In this context, the GMM approach is
very appealing, because it only requires identifying relevant instrument variables and
does not necessitate strong assumptions on the underlying model.

Several GMM estimators have been proposed in the theoretical literature. We
consider three alternative estimators already studied, for instance by Hansen, Heaton,
and Yaron (1996): the two-step GMM, the iterative GMM, and the continuous-
updating GMM. These approaches differ in the way the parameter vector and the

8 An alternative approach for models with expectations, not pursued here, is to use actual infla-
tion and/or output-gap forecasts. McNees (1985, 1992) and Orphanides (2001) used the Board of
Governors’ staff forecasts presented at each FOMC meeting.
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covariance matrix interact. To our knowledge, all existing estimations of the forward-
looking reaction function based on GMM have relied on the two-step estimator. We
also consider the way the covariance matrix is computed, investigating three different
approaches. In the first one (estimator Si7), the bandwidth is fixed chosen to be
equal to 4, consistently with the assumed correlation structure of expectation errors
(Newey and West, 1987). The two other estimators rely on prewhitening the moment
conditions and on the computation of a data-dependent bandwidth. For estimator
Sor, the optimal bandwidth is determined parametrically, and the quadratic spectral
kernel is used, following the procedure developed by Andrews and Monahan (1992).
The last estimator, S37, is based on a non-parametric optimal bandwidth, as proposed
by Newey and West (1994). The Appendix provides details on the GMM procedures.

Before proceeding, we address the issue of the choice of instruments. To reflect
the central bank’s information set at time ¢t — 1, our instrument set includes four
lagged values of the Funds rate, inflation, and the output gap: 41, ..., 444, Ts_1,
ceey T4y Y¢—1, -, Ye—a. This set contrasts with most previous GMM estimates of the
Federal Reserve reaction function, which include several additional instruments (such
as lags of commodity price inflation, M2 growth, and the interest-rate spread, in
CGG@G). There are two motivations for the choice of such a restricted information set.
First, as underlined by an abundant literature, when a large number of instruments
is selected, some instruments may be weakly relevant, thus deteriorating the finite-
sample properties of GMM estimators. The second motivation is that the comparison
of alternative GMM and ML estimators using Monte-Carlo simulations (see section
4) necessitates a plausible data generating process (DGP) for all instruments. We
therefore intentionally reduce the information set to lags of the three variables used
in the structural model discussed below. As a robustness check, we re-estimated
equation (4) using the same instrument set as CGG, and our estimation results were
not substantially altered. Investigating further the sensitivity of the reaction function
to the choice of instruments is out of the scope of the present paper.

Table 1 reports parameter estimates of the forward-looking reaction function (4)
obtained using the various GMM procedures. Estimates obtained using the two-step
GMM, the iterative GMM, and the continuous-updating GMM are reported in Panel
A, B, and C respectively. Over the 1979-2000 period, the second lag of interest rate
is never significant, so we present estimates assuming p, = 0. First, we consider the
two-step GMM with covariance-matrix estimator Sy (with a fixed bandwidth L = 4
and the Bartlett kernel) (first rows of Panel A, Table 1). This case corresponds to the
approach adopted by Orphanides (2001, Table 5) and CGG (Table 4, second row).
The estimate of the response to expected inflation (3 = 2.63) is significantly larger
than the 1.5 coefficient originally proposed by Taylor (1993). The estimate of the
output-gap parameter (v = 0.71) is very close to the Taylor 0.5 coefficient, although
it is only weakly significant.” We re-estimate the model with two lags of the interest
rate, and we obtain § = 2.4 and v = 0.6, but the second lag of interest rate is found

9Results are very close to those obtained by CGG. Over the period 1979-96, they obtain for
this specification § = 2.62 and v = 0.83. Both parameters are found to be strongly significant.
While they use a specification with two lags of the interest rate, their estimated degree of smoothing
(p(1) = 0.78) is very close to our own estimate (p; = 0.83).



to be insignificant. When estimating the model with lagged output gap in place of
expected output gap, we find the inflation parameter to be slightly lower (5 = 2.3)
and the output-gap parameter (v = 0.5) to be insignificant. Broadly speaking, the
standard, two-step GMM approach provides point estimates which are rather robust
to slight changes in the specification.

The iterative and continuous-updating GMM (Panels B and C) yield even larger
estimates for the inflation parameter. Estimate of 3 is as high as 3.59 for the iterative
GMM and 3.62 for the continuous-updating GMM. The values are larger than most
of those found in the empirical policy rule literature. The output-gap parameter is
found to be lower than with two-step GMM and statistically insignificant (0.49 and
0.43 respectively).

We turn now to GMM estimation based on improved covariance matrix estimators.
The broad picture suggested by our results is that the different covariance-matrix esti-
mators provide widely dispersed point estimates. For instance, the inflation parameter
estimated with continuous-updating GMM decreases from 3.62 with estimator Si7 to
2.72 with Sor and 2.11 with S3r. The iterative GMM estimate of 3 is as high as 6.00
with Sy and 6.98 with S37. Interestingly, the two-step GMM provides more stable
parameter estimates: The inflation parameter is § = 3.07 with covariance-matrix es-
timator Sor and decreases to 2.56 with S37. In addition, Hansen’s J-statistics are very
large with covariance-matrix estimators Ser and Ssr, so that the over-identifying re-
strictions imposed by instruments are rejected. This suggests that some instruments
fail to satisfy the orthogonality conditions. This result is of importance, since it
indicates that estimator Si7 may fail to detect model mis-specification.

To sum up, several empirical results are worth emphasizing. First, according to
most GMM estimates, the weight of expected inflation in the reaction function is
very large, while the weight of output gap is only weakly significant. Second, em-
pirical results provided by iterative GMM and continuous-updating GMM contrast
markedly with those provided by the usual two-step GMM approach. Note that, as
suggested by Stock and Wright (2000, p. 1090), the large dispersion of estimates
may reflect a specification problem or the presence of weak instruments. Last, for
efficient covariance-matrix estimators, there are signs of rejection of over-identifying
restrictions.

3.3 ML estimates

We focus now on the alternative ML estimation procedure. The ML approach requires
that an auxiliary model is estimated for the forcing variables (here, the inflation rate
and the output gap). The auxiliary model is used to forecast expected variables ap-
pearing in the reaction function, yielding cross-equation restrictions. The complete
model is solved using the generalized saddlepath procedure developed by Anderson
and Moore (1985). The ML estimation procedure is described in the Appendix. An
appealing advantage of ML over GMM, in a forward-looking context, is that expec-
tations obtained with ML estimation are fully model-consistent. Thus, the expected
values of inflation and output gap, which appear in the reaction function (4), are con-
sistent with the inflation and output-gap equations. The ML approach is of course



demanding, since a structural model has to be estimated. However, in the present
case, the widely-used Phillips curve (PC)/I-S curve framework provides us with a
reliable benchmark model of the inflation-output joint dynamics. We consider in this
section the model proposed by Rudebusch and Svensson (1999), which embodies the
main features of the standard macroeconomic paradigm. The key relationships of
this model are:

Ty = Qp1Tg—1 + OgaTyo + Qp3Te—3 + QraT—g + Qulr—1 + Ut (5)
Yo = By¥er + Bpvi2+ B, (1 —Ti1 — By) + vt (6)
where 7; = iZ?:o xy—; denotes the four-quarter moving average of x;. The PC

(equation (5)) relates quarterly inflation (7;) to its own lags and to lagged output
gap. To be consistent with the “accelerationist” hypothesis, which precludes any
inflation /output gap trade-off in the long run, we impose that the four autoregressive
parameters sum to one, so that a4 = 1—a;1 —as—a,3. We also set the constant term
to zero in this equation, so that the steady-state value of output gap is zero. Using the
Likelihood-Ratio test, this joint restriction is not rejected in our ML estimation (with
a p-value of 0.57). The I-S curve (equation (6)) relates the output gap to its own
lags and to the four-quarter moving average of the short real rate. This last term is a
proxy of the short real rate, as in Rudebusch and Svensson (1999). Parameter 3, may
be interpreted as the equilibrium real rate, since it is the value of real rate consistent
with a steady-state output gap of zero. The backward-looking nature of this model
can be pointed as a potential source of mis-specification. However, such a model has
proved to be a robust representation of the US economy. Moreover, no compelling
empirical forward-looking counterpart of the Rudebusch-Svensson model has so far
emerged (see Estrella and Fuhrer, 1999). In section 6, we check the robustness of our
ML estimation by exploring a hybrid model inspired by Rudebusch (2001).

Parameter estimates are reported in Table 2. The PC, the I-S curve, and the
reaction function are estimated simultaneously, with a free covariance matrix of in-
novations. Computed standard errors are corrected for serial correlation and het-
eroskedasticity of residuals. To be consistent with the GMM estimates of the reaction
function, we use the sample period 1979:Q3 to 2000:Q3.

The empirical PC/I-S model is very close to the estimates reported by Rudebusch
and Svensson (1999) over the period 1961:Q1 to 1996:Q2. The effect of output gap on
inflation is quite strong (o, = 0.127) and the response of output gap to the real rate
is 8, = —0.089. These effects are slightly lower than those obtained by Rudebusch
and Svensson (1999), but they have the right sign and are significantly different from
ZETO.

Turning to the reaction-function parameters, we obtain that the estimate of the
inflation parameter (3 is equal to 1.88. This is much lower than all point estimates
obtained by GMM. The estimate of the output-gap parameter v also markedly differs
from the GMM estimates, since it is essentially zero and non significant. Finally, the
smoothing parameter p, is found to be lower than the GMM estimate (0.71 vs. 0.83).
Therefore, the two estimation procedures produce very contrasted estimates of the
Federal Reserve reaction function. According to GMM, the Federal Reserve strongly

9



reacts both to inflation and to output gap. In contrast, according to ML, it reacts to
inflation only, and in a rather moderate way.

Since GMM and ML estimators are asymptotically equivalent, such a discrepancy
is likely to be explained by mis-specification. Evidence of mis-specification should be
apparent from the properties of residuals. Exploring the properties of GMM residuals
is not a promising way, however, since they include expectation errors, which are likely
to be serially correlated. Consequently, we focus on ML residuals. First, we consider
serial correlation. The Ljung-Box statistic, () (K), which tests the null hypothesis that
the first K serial correlations of residuals are jointly zero, is distributed as a x? (K).
@ (4) does not reject the null of no correlation up to 4 lags, whereas @ (8) rejects
the null only marginally. As far as the PC and I-S curve are concerned, residuals
are not found to be serially correlated. Turning to heteroskedasticity, we compute
the Engle statistic, R (K), which tests the null that the first K auto-correlations of
squared residuals are jointly zero. The test statistic is distributed as a x? (K). We
obtain that residuals of the reaction function as well as the I-S curve are strongly
heteroskedastic. Finally, according to the Jarque-Bera statistic, the null hypothesis
of normality is rejected for residuals of the reaction function and the I-S curve. Figure
1 displays reaction-function residuals. The vertical line corresponds to 1987:Q3. The
figure suggests that residuals are very volatile over the first part of the sample, whereas
they are strongly correlated over the second part.!

These results suggest that the statistical properties of the reaction-function resid-
uals are likely to prevent consistency of GMM as well as ML estimators. For GMM,
serial correlation may result in a lack of exogeneity of instruments. This problem
is confirmed by a careful inspection of GMM estimates. As claimed in section 3.1,
Hansen’s J-test strongly rejects over-identifying restrictions when efficient covariance-
matrix estimators are used. Similarly, the ML estimator may be inconsistent, since
serial correlation of residuals is not taken into account in the estimation. Estimating
a model with serial correlation in monetary policy shocks would allow to obtain con-
sistent estimators. Note, however, that we do not interpret residual serial-correlation
in terms of persistent monetary policy shocks (as in Rudebusch, 2001). Instead, we
claim that serial correlation is related to a structural shift in the reaction-function
parameters over our sample period. This does not preclude persistency in mone-
tary policy shocks found by Rudebusch (2001) over the 1987-2000 period. But, as
pointed out by this author, there is “econometric near-observational equivalence of
the partial-adjustment rule and the non-inertial rule with serially correlated shocks”

(page 3).

4 Investigating the discrepancy: Monte-Carlo ev-
idence

In this section, we conduct Monte-Carlo experiments to investigate the possible
sources of discrepancy between GMM and ML estimators. As underlined by Hall

10Gerial correlation of second-period residuals decreases only slowly with the horizon. It is 0.74 at
horizon 1, and still 0.38 at horizon 4.
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and Rossana (1991) in a related context, three reasons are likely to explain the dis-
crepancy between GMM and ML. (1) The downward bias on the autoregressive pa-
rameter, in partial-adjustment models. This bias occurs even when the model is
correctly specified, and has been established analytically by Sawa (1978) in the case
of iid innovations. When innovations are serially correlated, such a bias is likely to
exist, even when estimators are designed so as to be immune to residual autocorrela-
tion (see Hall and Rossana, 1991). (2) GMM small-sample bias, originating in weak
instrument relevance. The finite-sample performance of the GMM estimator is very
sensitive to the correlation between instruments and endogenous regressors. This low
correlation case (weak instrument relevance) has been analyzed, among others, by
Nelson and Startz (1990), Hall, Rudebusch, and Wilcox (1996), or Staiger and Stock
(1997). (3) Mis-specification of the model, which results in inconsistency of GMM and
ML estimators. In the case of GMM, mis-specification occurs when instruments are
correlated with innovations, so that instruments fail to be exogenous with respect to
parameters of interest. Such a problem is likely to occur in our model, since reaction-
function residuals display serial correlation. Similarly, serially-correlated innovations
provide inconsistent ML estimators.

4.1 Finite-sample biases

We first consider Monte-Carlo simulations to assess the finite-sample properties of
GMM and ML estimators in our forward-looking reaction function set-up. The ex-
periment is designed as follows. The DGP is given by the complete model constituted
of equations (5), (6) together with the reaction function (4). Parameters are those
obtained by ML (Table 2). The innovation covariance matrix, 3, is the sample co-
variance matrix of (uy, 04, 7),). For a given sample size T', a sequence of T'+ 50 random
innovations are drawn from the Gaussian distribution N <O, f]) with no serial corre-
lation. T'wo sample sizes are explored: T' = 85 corresponds to our estimation sample;
and T = 200 illustrates the effect of the sample size on the finite-sample bias. It is
chosen to represent an upper bound to the number of observations available in actual
macroeconomic database (say, 50 years of quarterly data). Initial conditions are set
equal to the average values over the sample. The first 50 entries are discarded to re-
duce the effects of initial conditions on the solution path. For each artificial database,
estimation is performed as follows: For GMM, the reaction function is estimated us-
ing four lags of (simulated) inflation, output gap, and interest rate as instruments.
For ML, the complete model is estimated. The Monte-Carlo experiment is based on
N = 2000 replications. Therefore, for each sample size and each estimator, we obtain
2000 parameter estimates, so that the empirical distribution of parameter estimates
can be analyzed.!!

Simulations are performed using GAUSS version 3.2 on a Pentium III platform.

1A large number of replications allows to obtain more precise estimates of the parameter vector.
Such a precision is crucial, here, to obtain an accurate measure of finite-sample biases. Let 0; be the
estimate of the parameter vector (say, ) obtained for replication i = 1,..., N and 6 = % Zf\;l 0,
be the mean of the empirical distribution over the N replications. Then, the standard error of 6 is

Ug/\/ﬁ.
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Two-step and iterative GMM estimators are obtained by simple matrix computa-
tions. Continuously-updating GMM and ML estimators are obtained by a numerical
optimization routine. We use the BFGS algorithm of the CO procedure for con-
strained optimization. We found no discrepancies when we used different algorithms.
All estimations are performed using numerical derivatives.

In some experiments, for T' = 85 observations, the continuous-updating GMM
estimator failed to converge. For instance, the number of crashes is 5.3 percent of our
samples with estimator S;r. Hansen, Heaton, and Yaron (1996) and Smith (1999) also
reported an important number of crashes and some difficulties to obtain reasonable
parameter estimates with the continuous-updating GMM. Two kinds of problems
occur. First, the numerical search for the minimizer sometimes fails. In addition, even
when convergence is reached, some parameter estimates can have unrealistic values,
so that the empirical distribution of estimates is severely distorted. For this reason,
in Table 3a, two rows are devoted to the continuous-updating GMM estimator. In
the first row, we report distribution statistic after we discarded only estimates which
reached the maximum number of iterations (here, 200). In the second row, we select
estimates satisfying the additional criterion that the smoothing parameter p; lies
inside the interval [—1;1]. In our Monte-Carlo experiment, 5.6 percent of estimations
fall outside of this parameter space, with estimator Sir.

The distribution of the alternative GMM and ML estimators is summarized in
Table 3a for the small-sample size (T = 85). Since parameter o does not provide
incremental insight on the finite-sample properties, we do not report results for this
parameter. Figures 2a and 2b also displays the distribution of parameters p, 3, and ~
for various estimation approaches. The table reveals four main results concerning the
finite-sample properties of the reaction-function parameters. First, the autoregressive
parameter is found to be systematically biased toward zero whatever the estimation
procedure. Although the sample size is small, the bias is not very large, however.
The parameter is set to 0.71in the DGP. The median parameter estimate is 0.66 for
the ML procedure and 0.69 for the two-step GMM approach. The sign and size of
the bias are consistent with the analytical results of Sawa (1978).

Second, as far as parameters for endogenous regressors (3 and ) are concerned,
we obtain significant, yet economically small, bias. For 3, the median bias is about
0.06 for GMM estimators, but as low as —0.006 with ML. In addition, parameter ~y
is under-estimated whatever the estimation approach. The sign and ordering of the
biases in alternative estimators are in accordance with point estimates obtained in
section 3. However, the discrepancy between parameter estimates cannot be explained
by finite-sample biases only.

Third, the standard deviation of parameter estimates is much lower with ML than
with GMM. For instance, for 3, the standard deviation is 0.22 with ML, whereas it
is 0.51 with two-step GMM, 0.55 with iterative GMM and 25.75 with continuous-
updating GMM (with covariance-matrix estimator Sir). The continuous-updating
estimator provides very imprecise estimates, even though the median is only slightly
upward biased. When “unreasonable” outcomes are excluded, the standard deviation
of truncated continuous-updating estimator is still as high as 2.67. The dispersion
of the iterative and continuous-updating GMM estimators is excessive as compared

12



with the two-step GMM estimator. Note, however, that the standard deviation is
partially misleading in the case of the continuous-updating GMM, because of the
occurrence of extreme outcomes, reflecting a fat-tailed distribution (see Figure 2b).
Thus, discrepancies between GMM techniques are rather small in terms of parameter
bias, but much larger in terms of precision of the estimation.

Fourth, the distribution of GMM estimators is asymmetric. This characteristic
is apparent from Figures 2a and 2b, and is particularly pronounced for continuous-
updating GMM and, to a lesser extent, for iterative GMM. As indicated by 10th
and 90th percentiles, the autoregressive parameter is leftward skewed, whereas the
inflation parameter is rightward skewed. These features provide a rationale for the
very large 3 estimates obtained with iterative and continuous-updating GMM on the
actual data.

The right-most columns of the table report the percentages of the 2000 replications
in which Hansen’s J-statistic exceeds the relevant critical value of the x? distribution.
Three results are worth noting. First, the two-step and iterative GMM tend to reject
the over-identifying restrictions too often. Second, as claimed by Hansen, Heaton,
and Yaron (1996), the continuous-updating GMM approach does not reject the null
hypothesis too often. This result is also consistent with the recommendation of Stock
and Wright (2000) to base inference on the continuous-updating criterion. Third,
selecting covariance-matrix estimators Syr and S3r does not improve performances
of the J-test.

Results for large sample (7" = 200) are reported in Table 3b. As expected, biases
of GMM and ML estimators have mostly disappeared, so that the large-sample distri-
bution is well approximated by the asymptotic distribution. Note, however, that the
standard deviation of the two-step and iterative GMM estimators remains slightly
larger than the standard deviation of the ML estimator. Moreover, even after dis-
carding unrealistic outcomes, the continuous-updating GMM estimator still display
significant biases and excessive dispersion.

Our findings are broadly consistent with the existing literature on finite-sample
properties of GMM estimators, as regards bias and dispersion (see, e.g., Tauchen,
1986, Nelson and Startz, 1990, Fuhrer, Moore, and Schuh, 1995, and papers in the
1996 special issue of the JBES). A noticeable feature of our results is the poor per-
formance of the continuous-updating estimator. The finding that the continuous-
updating GMM estimator has fat tails and yields a non-negligible proportion of im-
plausible estimates was reported by Hansen, Heaton, and Yaron (1996). We also
obtain that, for some parameters, the continuous-updating GMM is more widely bi-
ased than the two-step GMM. This is in contrast with some, but not all, of the
Monte-Carlo results in Hansen, Heaton, and Yaron (1996) and with the analytical
results in Newey and Smith (2000). The latter authors prove that the bias of the
continuous-updating estimator is smaller than that of the two-step GMM, but this
result is warranted when the number of moment restrictions is large. In contrast,
Smith (1999) and Stock and Wright (2000) document the poor performance of the
continuous-updating GMM in some of their estimates and Monte-Carlo experiments.
As regards the iterative GMM, we find that this estimator has no specific advantage
over the two-step estimator. Similar results are obtained by Smith (1999). Note that
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the iterative estimator has been advocated by Kocherlakota (1990) and Ferson and
Foerster (1994) on the basis of the rejection rates of the J-statistics rather than for
its performance in terms of parameter estimates.

To explain the overall poor performance of continuous-updating GMM, we can
point that estimation of the covariance matrix St plays a central role in this proce-
dure. Two problems may then occur. First, the covariance matrix may be imprecisely
estimated in small sample. This is outlined by Burnside and Eichenbaum (1996) as
the major cause of poor finite-sample performance of GMM-based Wald tests. One
reason is that the covariance-matrix estimator is a function of cross-moments be-
tween squared GMM residuals and squared instruments. Such empirical moments are
likely to converge toward the true value only very slowly. Therefore, even though
an efficient estimator of the covariance matrix is used, it is likely to be a poor es-
timator in finite sample. This problem is illustrated in Table 3a. When improved
covariance-matrix estimators Sor and Szr are used in place of Sir, the median bias
in continuous-updating estimators decreases only very slightly. The second problem
is related to the construction of the continuous-updating GMM objective function,
G(0) (Sr(9)) " g (0) in which the parameter vector and the covariance matrix are
determined simultaneously (see the Appendix for details and notations). As pointed
out by Hansen, Heaton, and Yaron (1996), this objective function may be minimized
for a parameter value that produces a large value of the variance of moment condition
St (0), even if the average moment condition g (#) deviates from zero.

An additional issue is the presence of weakly relevant instruments in our simula-
tion exercise. As it appears clearly from equations (4), (5), and (6), most variables
in the information set are relevant instruments for the DGP chosen. Two exceptions
are y;_3 and 1;_4, which are asymptotically uncorrelated with endogenous regressors,
conditional upon other variables in the instrument set. This may partly explain the
large standard deviation obtained for GMM estimators in Table 3. In order to ad-
dress this issue, we compare the distribution of the GMM estimators when using our
baseline instrument set and when using an instrument set excluding y;_3 and ;4.
We focus on the two-step GMM estimator, and we replicate N = 10’000 samples of
T = 85 observations to obtain precise estimates of the parameter standard deviation.
Results (not reported to save space, but available from the authors upon request) indi-
cate that median biases and parameter standard deviations are essentially unaffected
by inclusion of y;_3 and ;4. More specifically, when those variables are included,
the standard deviation of 3 slightly decreases, whereas the standard deviation of ~
slightly increases. We may explain this result by arguing that, within sample, y;_3
and y;_4 are slightly correlated with endogenous regressors, so that their inclusion in
the instrument set does not worsen parameter precision.

4.2 Mis-specification and endogeneity bias

Another route for explaining the discrepancy between estimators is that the model or
moment restrictions used in implementing one or several of the estimators might be
mis-specified. Under mis-specification, we expect the estimators to be inconsistent
and to converge to different probability limits. In addition, mis-specification is likely
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to affect differently the finite-sample behavior of GMM and ML estimators. In the case
of GMM, mis-specification occurs as a consequence of lack of instrument exogeneity.
Since our instruments are in the information set dated ¢ — 1, the only source of
endogeneity here is serial correlation of innovations.

To measure the effect of mis-specification on the finite-sample properties of estima-
tors, we perform the following Monte-Carlo experiment. We simulate model (4), (5),
and (6), with the parameter estimates obtained by ML, as in the previous experiment.
But innovations are now simulated as follows: Over the first part of the sample (the
first 0.35T observations), innovations are assumed to be uncorrelated Gaussian vari-
ates, with the covariance matrix obtained with residuals over the 1979-87 subperiod.
Innovations over the second part of the sample (the last 0.657 observations) have
the same covariance matrix as residuals over the 1987-2000 subperiod, yet the policy
shock is serially correlated. We assume that the policy shock is well approximated by
an AR(1) process, whose parameter has been obtained using sample residuals (the
first-order correlation is estimated to 0.74). This simulation strategy allows to mimic
the two characteristics of residuals, heteroskedasticity as well as serial-correlation of
the policy shock.

Results of this simulation exercise are reported in Table 4a for sample size T' = 85
and Table 4b for sample size T = 200. As expected, we obtain a significant bias
for all estimators. The three parameters of interest (p;, §, and ) are systematically
over-estimated. Note that the mis-specification bias for the autoregressive parameter,
facing serial correlation of the error term, is of opposite sign to the finite-sample bias
obtained above, consistently with the theoretical result obtained by Sawa (1978). The
median bias on p; is lower for the ML estimator than for the two-step GMM (0.04 vs.
0.11). Both approaches also differ by the bias on parameters pertaining to endogenous
regressors. The median bias on f is as high as 0.33 for two-step GMM, whereas it is as
low as 0.13 for ML. Moreover, parameter - is very strongly over-estimated. Although
the true parameter is essentially zero, the median estimator is as high as 0.49 for
two-step GMM and 0.21 for ML. Note that iterative GMM estimators are close to
two-step estimators, whereas continuous-updating estimators are generally lower. For
instance, the bias of the continuous-updating estimator for parameter v is as low as
0.26. This result suggests that this approach is less biased under mis-specification.

As far as the standard deviation of parameter estimates is concerned, we note
that GMM procedures produce excessively large standard deviations. For instance,
the standard deviation of 3 is 0.33 with ML and 0.79 with two-step GMM, 4.21 with
iterative GMM, and 3.37 with truncated continuous-updating GMM. Using efficient
covariance-matrix estimators does not allow to obtain more precise GMM estimators.
Instead, it generally implies an increase in the standard deviation of the parameter
distribution.

Taken together, evidence on bias and standard deviation of estimators under mis-
specification suggests that serial correlation is a plausible explanation for the dis-
crepancy between estimators found in section 3. Note, however, that this simulation
exercise does not explain the whole discrepancy between GMM and ML estimators.
Instead, it provides a measure of the bias in the reaction-function parameters when
simulated innovations display a dynamic similar to the one of observed residuals.
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Within this framework, we also address the issue of why the J-test based on
the covariance-matrix estimator S;r does not reject the over-identifying restrictions,
whereas J-tests based on estimators Sor and Ssr strongly reject these restrictions. To
do so, we estimate the J-statistics for all simulated samples and compute the frequency
of rejection of the null hypothesis at the asymptotic 1%, 5%, and 10% critical values.
This measures the power of the J-test against invalid moment restrictions due to
serially correlated innovations. Tests performed using estimator Sir reject the null
in only 52 percent of the simulated samples at the theoretical 5 percent level. By
contrast, with estimator Ssr, rejection is obtained in 92 percent of the samples.
This result suggests that the low power of the J-statistic is a reason why the GMM
approach with estimator Si7 is unable to detect the failure of GMM due to lack
of exogeneity. We also observe that J-statistics computed with continuous-updating
GMM have very low ability to detect lack of exogeneity of instruments. This result is
consistent with empirical evidence provided by Table 1, where this approach is found
to be unable to reject over-identifying restrictions, whatever the covariance-matrix
estimator.

5 Estimation over the 1987-2000 period

5.1 Stability tests

In the preceding section, we have shown that the discrepancy between GMM and ML
estimates can be partly explained by the serial correlation of the policy shock. We now
interpret this serial correlation as reflecting a shift in the parameters of the reaction
function. More precisely, we argue that constraining parameters to be constant over
the sample period leads to an omitted-variable bias in the estimation. This claim is
corroborated, for instance, by the finding that the output-gap parameter is significant
over the 1987-2000 period (as shown, for instance, by Rudebusch, 2001), but not over
the 1979-2000 period.

To investigate this issue, we perform parameter stability tests both on GMM and
ML estimates. We assume that the shift occurs, if any, in 1987:Q3. Of course we
do not claim the date of the shift to be fully uncontroversial, in particular because
the shift in parameters may have occured before this date.!?> But in our context,
it is reasonable to treat this candidate break point as known, given the change in
Chairman as well as the large number of studies that focus on the 1987-2000 sample.
Therefore, we assume that the US reaction function remains stable during the tenure
of the Federal Reserve chairmen.

Results of stability tests are presented in Table 5. We adopt the strategy devel-
oped by Andrews and Fair (1988) for known break point. For the GMM estima-

12Tn particular, over the period 1979:Q4-1982:QQ4, the operating procedures of the Federal Reserve
involved targeting non-borrowed reserves. This period, characterized by very volatile interest rates
and a sharp desinflation episode, may strongly affect the estimation of the reaction function over the
1979-2000 period. For instance, Fair (2001) is not able to reject stability of the reaction-function
parameters for his specification, but he claims that there is a large economic difference in the
coefficient on inflation between his first (1954-79) and second (1982-99) subperiods.
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tor (Panel A), we report the Wald test statistics for the two-step and the iterative
GMM, for the three covariance-matrix estimators. We do not present results for the
continuous-updating GMM estimator, because the algorithm failed to converge over
both subperiods. Under the null of stability, the Wald test statistic is distributed as
a x% (4). Therefore, we strongly reject the null of stability of the reaction-function
parameters for each of the GMM estimators.

The test for stability in the ML framework offers the opportunity to consider the
stability of the parameters in the reaction function as well as in the macroeconomic
model. Tests are performed using a Likelihood-Ratio statistic. Under the alternative
hypothesis, the model is estimated with a shift in all parameters in 1987:Q3. Under
the null, the shift is assumed to occur only on the macroeconomic parameters or,
alternatively, on the reaction-function parameters. Results reported in Table 5 confirm
that the model with stability of the parameters is rejected at usual significance level.
Moreover, we strongly reject the stability of the reaction-function parameters, while
we are not able to reject the stability of macroeconomic parameters. This last result
is consistent with the test performed by Rudebusch and Svensson (1999).

In sum, stability of the reaction-function parameters is rejected for GMM as well
as ML estimation procedures. Our results are not inconsistent with those reported
by CGG. These authors obtain evidence that, for the same specification, the autore-
gressive parameters significantly changed between Volcker and Greenspan tenures.

5.2 Estimation results

We consider now the estimation of the forward-looking reaction function over the
Greenspan era (1987:Q3-2000:Q3). For GMM, we estimate (4) as before, yet while
allowing a second lag in the dynamics of the interest rate. It has been found to
be relevant over this sample by Rudebusch (2001). For ML, we adopt the following
strategy. Since we wish to estimate the dynamics of the inflation rate and the output
gap precisely, we maintain the estimation of the model over the period 1979-2000,
taking advantage of the stability of the PC/I-S equations. But, we introduce a shift in
the parameters of the reaction function in 1987:QQ3. Note that the covariance matrix of
innovations is also allowed to shift at this date. With such a strategy, macroeconomic
parameters are estimated over a large sample, whereas reaction-function parameters
are allowed to shift across Federal Reserve chairmen.

Table 6 reports parameter estimates obtained with the different GMM approaches.
Several results are interesting to comment. First, the autoregressive component of
the reaction function differs markedly from the one estimated over the 1979-2000
period. This confirms the result found by Rudebusch (2001) and provides a rationale
for residual autocorrelation when the reaction-function parameters are assumed to
be stable over the whole sample. Second, point estimates of the reaction-function
parameters obtained by the various GMM procedures are now very close one to
each other. For instance, estimates of parameter § range between 1.58 and 1.90.
Omitting the continuous-updating estimator, the range is even narrower (between
1.64 and 1.72). We obtain a similar result for the other parameters. Third, using
different covariance-matrix estimators only results in a change in standard error of
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parameters, but not in a change in parameter estimates themselves. In most cases,
standard errors decrease from covariance-matrix estimator Sir to Sor and to Ssr.
Computing improved covariance matrices therefore yields in a greater precision in
parameter estimates. Last, in no case does the J-statistic reject the over-identifying
restrictions. In sum, the key insights obtained for the reaction function over the
1987:QQ3-2000:QQ3 period are robust to change in GMM options.

ML estimates of the model with a shift in the reaction-function parameters are
displayed in Table 7. First of all, parameters of the PC and the I-S curve are not
significantly altered by the shift in the reaction-function parameters. As far as the
reaction function is concerned, we obtain two models with very typical features. Over
the first period corresponding to Volcker’s tenure, the inflation parameter is § = 1.49,
whereas the output-gap parameter is very close to zero and insignificant, so that it
has been constrained to zero in the estimate reported in the table. Only one lag of
interest rate is significant. Over the second subperiod corresponding to Greenspan’s
tenure, the reaction function is essentially a Taylor rule, with § = 1.52 and v = 0.51.
The partial-adjustment model requires a second lag of interest rate to adjust to the
data. These parameter estimates are very similar to those obtained by Rudebusch
(2001) over almost the same sample.

Statistical properties of residuals of the reaction function estimated over each
subperiod are also reported in the table. The main features are the following. The
standard error of residuals is divided by 5 between the first and second subperiods.
The null hypothesis of no serial correlation is not rejected at any significance level for
both subperiods and the heteroskedasticity almost completely disappears over the two
subperiods. These results suggest that the serial correlation and the heteroskedasticity
obtained over the whole sample were to a great extent attributable to the shift in
parameter. Figure 3 displays the reaction-function residuals when a shift is introduced
in equation (4). It confirms that reaction-function residuals do not appear serially
correlated anymore.

Overall, the discrepancy between GMM and ML estimates is fairly small over
the 1987-2000 period. For instance, the baseline two-step GMM estimate of 3 is 1.65
whereas the ML estimate is 1.5. Similarly, the GMM estimate of 7 is 0.65 whereas
the ML estimate is 0.5. Over the 1979-87 period, the response to expected inflation is
also estimated to 1.5, whereas the output-gap parameter is essentially zero.!®> These
estimates differ substantially from those obtained over the whole period, assuming
parameter stability. We conclude that the assumption of a stable output-gap param-
eter and a stable autoregressive dynamics is responsible for the very large inflation
parameter obtained by GMM over the 1979-2000 period. Interestingly, the induced
bias is more pronounced on GMM estimators than on ML estimators. This appears
to be related to the strong serial correlation of residuals which results in a lack of
exogeneity of instruments.

B3 Two-step GMM estimation of the reaction function over the 1979-87 period (not reported, but
available from the authors upon request) is as follows: p; = 0.73, 8 = 1.63, and v = —0.06.

18



6 Robustness of ML estimates

Results obtained in previous sections provide support to the use of ML procedure
when estimating reaction functions. However, simulations reported in section 4.1 are
likely to provide an excessively optimistic view of ML, since the true DGP is assumed
to be known when implementing the ML approach. In actual estimation settings, a
major concern is of course that there might be uncertainty over the relevant DGP.
Simulations in section 4.2 provide a first answer to this concern, since even when the
estimated model is assumed to be mis-specified (due to serial correlation of the policy
shock) the induced bias on ML estimators is lower than that on GMM estimators.
This is also reflected by estimation results in section 3, where ML estimates over
the 1979-2000 period for parameters on endogenous regressors appear to be more
reasonable and less dispersed than alternative GMM estimates. To investigate further
this concern, we assess now whether ML estimation is robust to the choice of the
macroeconomic model.

First, we consider as a macroeconomic model which includes VAR-like equations
for inflation and the output gap. As in previous section, parameters are assumed to
be constant over the whole period while the monetary policy rule shifts in 1987:Q3.
In order to obtain some reasonable long-run properties to the system, we impose
the following restrictions: First, no long-run inflation-output trade-off is allowed, so
that, in the inflation equation, lagged inflation parameters sum to one, the constant
is set to zero, and the interest-rate parameters sum to zero. Second, the output gap
is assumed to depend on lags of the real rate (i;_ — m;_j) rather than on separate
lags of 7; and ;. Since we introduce four lags in each equation, seven restrictions
are thus imposed. Overall, this macroeconomic model has 19 parameters, while the
Rudebusch-Svensson model has 8 parameters only. This represents both a plausi-
ble and quite general perturbation to the baseline model. Parameter estimates are
obtained by estimating this model with the ML approach. We obtain the following
reaction-function parameters (results for other equations are not reported to save
space), with standard errors in parenthesis: p = 0.451 (0.204), 5 = 1.468 (0.249),
a = 3.703, (0.992) for the first-period reaction function and p, = 1.325 (0.108),
py = —0.513 (0.093), B = 1.659 (0.303),v = 0.613 (0.230), and o = 1.841 (0.765) for
the second-period reaction function.

These parameters are very close to those obtained with the Rudebusch-Svensson
model. However, it can be argued that the Rudebusch-Svensson model is itself a
parsimonious, constrained VAR model which imposes additional, relevant constraints.
To perform a more severe sensitivity analysis, we now consider a model which extents
the Rudebusch-Svensson model to incorporate some forward-looking components in
the PC and the I-S curve. We consider the hybrid model proposed by Rudebusch
(2001). The empirical version of this model, suitable for quarterly data, is:

4

T = B T+ (1= ) Y amimej + o + (7)
j=1
2
Y = HyEi1y+ (1 - ,Uy) Zﬂyjytfj + B, (ree1 — %) + v, (8)
j=1
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where 1,1 = p, (Ey_10443 — Ey_17e43) + (1 — ) (ig—1 — T¢—1) is a weighted combina-
tion of an ex-ante 1-year rate and an ex-post 1-year rate. The case p, = p, = p, =0
corresponds to the backward-looking model of Rudebusch and Svensson (1999). In
the other extreme model (u, = p, = p1, = 1), the PC and the I-S curve have a purely
New-Keynesian forward-looking structure. In such a forward-looking macroeconomic
model, an inertial monetary policy rule has been shown to be optimal (Woodford,
1999, Sack and Wieland, 2000).

Parameter estimates of the hybrid model are reported in Table 8. First, the degree
of forward-lookingness of the PC and the I-S curve are 0.31 and 0.44 respectively.
The estimate of p, is broadly consistent with some empirical evidence obtained, for
instance, by Roberts (2000). The estimated value of y, is consistent with a rather
high cost for adjusting output. Fuhrer (2000) obtains that u, is approximately equal
to 0.3. The weight of ex-ante rate, p,, is rather high, but imprecisely estimated. The
LR test for joint nullity of u,, u,, and p, rejects the null hypothesis (with a p-value
equal to 1.9%), suggesting that the dynamics of inflation and output gap are indeed
partially forward-looking.

Estimates of the reaction-function parameters are remarkably close to ML esti-
mates obtained with the purely backward-looking macroeconomic model and to GMM
estimates over the 1987-2000 period. The response to expected inflation is 3 = 1.65,
whereas the response to expected output gap is v = 0.51. Standard errors are also
very close one to each other.

In summary, our previous ML estimates are broadly robust to a change in the
macroeconomic model. Though a comprehensive analysis of GMM and ML under
mis-specification is out of the scope of the present paper, our various results indicate
that ML is a fairly reliable estimation procedure in our context.

7 Conclusion

This paper has re-examined the Federal Reserve reaction function, using a now stan-
dard dynamic forward-looking Taylor-rule specification, and implementing alternative
GMM as well as ML estimation procedures.

We provide some original empirical results. First, over the baseline 1979-2000
period, the various GMM procedures yield very different estimates. Iterative and
continuous-updating GMM, which have not often been considered in the reaction-
function literature, produce particularly high and somewhat unrealistic inflation pa-
rameter within our sample. In addition, some covariance-matrix estimators lead to
rejection of the over-identifying restrictions by the J-statistic. These results are likely
to be explained by a mis-specification of moment conditions.

Second, the ML estimate of the inflation parameter is much lower than GMM
estimates, and more in line with the Taylor rule. Reaction-function residuals are also
found to be strongly heteroskedastic and slightly autocorrelated. Further scrutiny of
residuals suggests that mis-specification comes from a shift in the reaction function.
First-period residuals are very volatile, whereas second-period residuals display a
large serial correlation.
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Third, we find that GMM finite-sample bias is not sufficient to account for the
discrepancy between alternative estimators. Rather, the discrepancy is shown to be
consistent with serial correlation of the policy shock over the second period, because it
affects more seriously GMM estimates than ML estimates. We interpret such a serial
correlation as a consequence of a significant shift in reaction-function parameters
in 1987:Q3. Then, we show that, over the 1987-2000 period, parameter estimates
are very stable across estimation procedures. Moreover, the response to expected
inflation is much lower than over the 1979-2000 period, consistently with the value
suggested initially by Taylor (1993).

In addition, we obtain several results on the properties of estimation procedures
for forward-looking monetary policy rules. First, all GMM estimators exhibit large
dispersion and suffer from finite-sample bias. In particular, they tend to overstate
the degree to which interest rate responds to expected inflation. However, the size of
this bias is rather limited. Our overall assessment of GMM in the case of the reaction
function is thus less critical than that obtained by Fuhrer, Moore, and Schuh (1995)
in the case of inventories.

Second, performances of the three GMM estimators considered are contrasted.
The two-step GMM estimator exhibits a smaller bias, and a lower dispersion than
other GMM estimators. This provides a rationale for using that simple approach,
as is usually done in empirical studies of the reaction function. In contrast, the
continuous-updating estimator is found to be more widely dispersed and fat-tailed,
in our set-up.

Third, ML is a feasible alternative to GMM for estimating a forward-looking
reaction function. A traditional drawback with ML is that it requires estimating a
structural model for forcing variables. However, in the present context, a PC/I-S
curve model, such as the Rudebusch-Svensson model, provides a fairly reliable model
of the economy. In addition, estimation results show some robustness to the model
used. Given the sample sizes typically available for estimating monetary policy rules,
ML should be viewed as an attractive alternative to the GMM approach.

8 Appendix

8.1 GMM estimators

Let equation (4) be expressed in standard regression notation as
y=X0+¢

with y a (T x 1) vector and X a (T x n) matrix. X; = (zy; ... T,4) is a vector of
observations and  is the (n x 1) vector of unknown parameters. Let Z = (Z; ... Zr)'
be a (T x q) matrix of instruments, with ¢ > n. All the ¢ instruments are assumed
to be predetermined, in the sense that they are orthogonal to the current error term.
For simplicity, instruments are assumed to be in the information set available at date
t —1, so that F (e;Z;—1) =0, Vt and i = 1, ...,q. This can be written as

Eg (9) =0
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where g; (0) = (y: — X{0) - Z; 1 = €t - Zi1.
The GMM estimator, denoted Oz, is the value of # that minimizes the scalar

Q=g (50 (8))) 9 ® ©)

where the (¢ x 1) vector gr () = %3.[_, g: (f) denotes the sample mean of g; (6).
St (9;) is a consistent estimator of the (¢ x q) covariance matrix of v/T'gy (6), ob-

A1
tained using 6, as a consistent estimator of . The GMM estimator is then defined

by:
) 1\ -1 -1 1\ -1
br — <X’Z <5T <9T>) Z’X) X'z <ST (%)) Z'y (10)
a ~1 -1 -1
with asymptotic covariance matrix Q2 = | X'Z (ST (‘97’)) 7'X

In the paper, we implement three alternative GMM estimators already consid-
ered in the theoretical literature. In the first approach, the parameter vector is
estimated with the two-step two-stage least squares, or “two-step GMM?” | initially
proposed by Hansen (1982), Hansen and Singleton (1982), Cumby, Huizinga, and
Obstfeld (1983), and Hayashi and Sims (1983). Assuming an initial guess for the

. . 0 .
covariance matrix, such as Sé) = Y11 ZZ,, a first estimate of the parame-

(1
ter vector, 9;), is obtained using S,EFO ) to weight the moment conditions, so that

by’ = (x'2(22)" 2’X) " X'Z(2'Z)™" Z'y. Then, the covariance matrix Sy (e(Tl ))

~(1
is estimated with & = vy — Xt’G;) using the procedure described below. Last, the
~(2
two-step GMM estimator, denoted 9;), is obtained by minimizing equation (9).
The second approach, suggested by Ferson and Foerster (1994) or Hansen, Heaton,
and Yaron (1996), relies on estimating parameters and the covariance matrix recur-

~A(j—1
sively. Beginning with the two-step estimator, at each step j, St ((9;3 )) is used to

construct the new parameter vector 9;3) The “iterative GMM?” estimator, denoted

@;OO), is obtained when convergence of the parameter vector is reached or when j

attains a maximal number of iterations.'*

In the last approach, called “continuous-updating GMM”, developed by Hansen,
Heaton, and Yaron (1996) and studied in Stock and Wright (2000) and Newey and
Smith (2000), the covariance matrix and the parameter vector are simultaneously
determined in the minimization. Therefore, the continuous-updating estimator is the
solution of the following problem

f?el}n gr (0)' (St (0)) " gr (0).

"We adopt max; (952 — 95;_1)) < 1075 as the convergence criterion, where @2«) denotes the

ith element of @;Z ), the estimate of the parameter vector at the jth iteration. The maximal number
of iterations is chosen equal to 1000.
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GMM estimates are justified on asymptotic grounds. Small-samples properties of
the GMM procedure have been studied in a number of papers. The general result is
that the asymptotic theory provides a poor approximation in finite samples. Using
Monte-Carlo experiments, Tauchen (1986), Kocherlakota (1990), and Andersen and
Sorensen (1996) provided evidence that GMM estimates can be strongly biased in
small samples. The alternative GMM estimators have the same asymptotic distri-
bution. Nevertheless, the continuous-updating GMM offers the advantage over the
two-step and iterative GMM that estimates are invariant with respect to the initial
covariance matrix for S7, and with respect to the normalization of the equation of
interest. The iterative GMM approach has been advocated by Kocherlakota (1990),
Ferson and Foerster (1994). Based on Monte-Carlo simulations, they find iterative
GMM to have superior finite-sample properties as compared with the two-step GMM.
Hansen, Heaton, and Yaron (1996) also compare the finite-sample properties of these
alternative GMM estimators. In some cases, the two-step and the iterative estimators
are found to be more widely median biased than the continuous-updating estimator.
But, the distribution of the continuous-updating estimator has much fatter tails.

Estimating the covariance matrix St has been widely discussed in the theoretical
literature. An asymptotically efficient estimator is obtained by choosing a consistent
estimator of V = E (gt (0) g (9)') = FE (¢2Z,Z}) the covariance matrix of g; (6). When
innovations are likely to be heteroskedastic and serially correlated, the covariance
matrix can be consistently estimated by the estimator proposed by Newey and West

(1987):

N L , 1 &L
Sr(br) =So+ > w®)(Si+S)  with  Si== Y && (212,
=1 t=1+1
where & = y, — X}0r and w(l) = 1 — LLH denotes the Bartlett kernel. The band-

width L is determined by the correlation structure of moment conditions which is
known a priori in some application (Newey and West, 1987). Andrews and Monahan
(1992) and Newey and West (1994) also proposed improved techniques to estimate
the covariance matrix. In contrast to Newey and West (1987), both approaches sug-
gest to prewhiten the moment conditions and to use a data-dependent bandwidth.
In Andrews and Monahan (1992), the optimal bandwidth is computed assuming an
AR(1) process for the moment conditions, whereas the bandwidth is computed non-
parametrically in Newey and West (1994). In addition, Andrews and Monahan (1992)
suggest using the quadratic spectral kernel rather than the Bartlett kernel (see these
two papers for additional details of the procedures).

We consider three variants of the covariance-matrix estimator: (1) Sir is the
estimator proposed by Newey and West (1987) with L = 4. (2) Syr is the estimator
proposed by Andrews and Monahan (1992). (3) Ssz is the estimator suggested by
Newey and West (1994).

Another important feature of GMM estimation is that the information set may
contain more instruments than unknown parameters (provided ¢ > n). In such a
case, when the model is correctly specified, all the elements of the sample moments
Jr (HT) are close to zero, but they cannot be set to zero exactly. It turns out that if

23



the covariance matrix St is chosen optimally, then the minimized distance
A N/ 1 ~
Jr =Tgr (QT) (Sr) "' gr (QT)

is asymptotically distributed as a x? with ¢ — n degrees of freedom. This provides
us with Hansen’s test of the over-identifying restrictions (Hansen, 1982). A rejection
of these restrictions would indicate that some variables in the information set fail to
satisfy the orthogonality conditions.

8.2 The ML approach

ML estimation of the reaction function, together with the PC and the I-S curve is
implemented using the procedure developed by Anderson and Moore (1985), which
computes the reduced form of any linear forward-looking model. Our forward-looking
model can be written in the format

0 0
Y. Hjwewj+ ) HiE (ve) = e (11)

j=— j=1

where z; = (74, ys, it)/ and H; are conformable square matrices containing the model’s
parameters. The innovations e; are assumed to be iid with zero mean and covariance
matrix ». 7 and 0 denote leads and lags respectively. In our empirical application,
we have 7 = 6 = 4. For instance, forward-looking terms are inflation as well as
output gap leads in the reaction function, in the case of the purely backward-looking
macroeconomic model.

Using the generalized saddlepath procedure of Anderson and Moore (1985), the
expectation of future terms in equation (11) is expressed as a function of expectations
of lagged terms:

-1
Ey (v44r,) = Z BBy (T1k+5) k> 0. (12)
Jj=—T

Then, equation (12) is used to derive the expectation of future terms as a function
of the present and past terms. Substituting expectations into equation (11) gives the
so-called observable structure

0
Z Sj.’IIH_j = €. (13)

j=-7

The procedure proposed by Anderson and Moore (1985) is very efficient and can
be applied to a wide range of applications. It has been widely used in the empirical
literature (see, e.g., Fuhrer, Moore, and Schuh, 1995, Fuhrer and Moore, 1995a and
b). Note that given the recursive structure of our model, S is equal to identity.

Finally, the concentrated log-likelihood function is computed using the observable
structure (13):

1 T -
InL = —§nT [1+1n(27m)] — 3 In ’E’
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where 3 = L >°1_1 é:€; is the estimated covariance matrix of residuals. The log-
likelihood function is maximized using the BFGS algorithm of the GAUSS constrained
optimization procedure. For Monte-Carlo simulations, the maximum number of iter-
ations is chosen equal to 200. Note that, in the procedure used, pre-sample initial
values of the variables of interest are treated as deterministic. The parameter co-
variance matrix is computed using the inverse of the Hessian of the log-likelihood
function.
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Captions

Table 1: The table reports parameter estimates of the reaction function (equation
(4)) by various GMM procedures over the 1979-2000:Q3 period. Two-step, iterative,
and continuous-updating estimators are displayed in Panel A, B, and C respectively.
Details on these estimators and on the covariance-matrix estimators Si7, Sor, and
Ssr are provided in the Appendix. The instruments set includes, in addition to the
constant term, four lags of the Funds rate, inflation, and the output gap.

Table 2: The table reports parameter estimates and residual summary statistics
for the ML joint estimation of equations (4), (5), and (6) over the 1979-2000:Q3
period. @ (K) is the Ljung-Box statistic, which tests the null that the first K serial
correlations of residuals are jointly zero. R (K) is the Engle statistic, which tests
the null that the first K serial correlations of squared residuals are jointly zero.
Under the null, these statistics are distributed as a x? (K). J-B is the Jarque-Bera
statistic, which tests the null of normality. Under the null, it is distributed as a
X? (2). see denotes the standard error of residual estimates. log-L denotes the sample
log-likelihood.

Table 3: This table displays the distribution of alternative GMM and ML estima-
tors of the reaction-function parameters. The DGP is given by equations (4), (5), and
(6), while parameters are those obtained by ML (Table 2). The sample size is T' = 85
(Table 3a) or T' = 200 (Table 3b). For each parameter, the mean, standard devi-
ation, median, 10th percentile and 90th percentile of the distribution are reported.
Truncated continuous-updating corresponds to estimates whose smoothing parame-
ter p, lies inside the interval [—1,1]. Rejection rates are the percentages of the 2000
replications in which the Hansen’s J-statistic exceeds the relevant critical value of the
x? distribution. For the continuous-updating GMM approach, figures in parenthesis
indicate the frequency of iterations which were discarded before computing summary
statistics.

Table 4: This table displays the distribution of alternative GMM and ML es-
timators of the reaction-function parameters. The DGP is given by equations (4),
(5), and (6), while parameters are those obtained by ML (Table 2). Over the first
subperiod (0.357" first observations), the policy shock is assumed to be iid, whereas
over the second subperiod the policy shock has a first-order correlation of 0.74. The
sample size is T" = 85 (Table 4a) or T" = 200 (Table 4b). For each parameter, the
mean, standard deviation, median, 10th percentile and 90th percentile of the distri-
bution are reported. Truncated continuous-updating corresponds to estimates whose
smoothing parameter p; lies inside the interval [—1, 1]. Rejection rates are the per-
centages of the 2000 replications in which the Hansen’s J-statistic exceeds the relevant
critical value of the x? distribution. For the continuous-updating GMM approach,
figures in parenthesis indicate the frequency of iterations which were discarded before
computing summary statistics.
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Table 5: This table reports tests for stability of reaction-function parameters.
The shift is assumed to occur, if any, in 1987:Q3. For GMM, the test is based on the
Wald statistic, which is distributed as a x? (4). Results for the continuous-updating
estimator are not reported, because the algorithm failed to converge over both sub-
periods. For ML, the test is based on the Likelihood-Ratio statistic. The following
null hypotheses are considered: stability of the reaction-function parameters, stabil-
ity of macroeconomic parameters, and stability of all parameters. The test statistics
are distributed as a x? with 5, 8, and 13 parameters respectively. log-L denotes the
sample log-likelihood. dof denotes the degree of freedom of the test statistic.

Table 6: The table reports parameter estimates of the reaction function (equa-
tion (4)) by various GMM procedures over the 1987:QQ3-2000:Q3 period. Two-step,
iterative, and continuous-updating estimators are displayed in Panel A, B, and C re-
spectively. Details on these estimators and on the covariance-matrix estimators Sir,
Sor, and Sz are provided in the Appendix. The instruments set includes, in addition
to the constant term, four lags of the Funds rate, inflation, and the output gap.

Table 7: The table reports parameter estimates and residual summary statistics
for the ML joint estimation of equations (4), (5), and (6) over the 1979:Q3-2000:Q3
period with a shift in the reaction-function parameters in 1987:Q3. @ (K) is the
Ljung-Box statistic, which tests the null that the first K serial correlations of residuals
are jointly zero. R (K) is the Engle statistic, which tests the null that the first K serial
correlations of squared residuals are jointly zero. Under the null, these statistics are
distributed as a x? (K). J-B is the Jarque-Bera statistic, which tests the null of
normality. Under the null, it is distributed as a x? (2). see denotes the standard error
of residual estimates. log-L denotes the sample log-likelihood.

Table 8: The table reports parameter estimates and residual summary statistics
for the ML joint estimation of equations (4), (7), and (8) over the 1979:Q3-2000:Q3
period with a shift in the reaction-function parameters in 1987:Q3. @ (K) is the
Ljung-Box statistic, which tests the null that the first K serial correlations of residuals
are jointly zero. R (K) is the Engle statistic, which tests the null that the first K serial
correlations of squared residuals are jointly zero. Under the null, these statistics are
distributed as a x? (K). J-B is the Jarque-Bera statistic, which tests the null of
normality. Under the null, it is distributed as a x? (2). see denotes the standard error
of residual estimates. log-I. denotes the sample log-likelihood.

Figure 1: This figure displays the reaction-function residuals for the ML joint
estimation of equations (4), (5), and (6) over the 1979:Q3-2000:Q3 period. The
model is assumed to have stable parameters.

Figure 2a: This figure displays the distribution of ML and two-step GMM estima-
tors of p, B, and 7. The DGP is given by equations (4), (5), and (6), while parameters
are those obtained by ML (Table 2). The sample size is T' = 85.

Figure 2b: This figure displays the distribution of ML and alternative GMM
estimators of 5. The DGP is given by equations (4), (5), and (6), while parameters
are those obtained by ML (Table 2). The sample size is T = 85.
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Figure 3: This figure displays the reaction-function residuals for the ML joint
estimation of equations (4), (5), and (6) over the 1979:Q3-2000:Q3 period. The
model is assumed to have a shift in the reaction-function parameters in 1987:Q3.
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Table 1: GMM estimates (1979:0Q3-2000:Q3)

Panel A Panel B Panel C
Two-step GMM Iterative GMM Continuous-updating GMM

Estimate Std err. Estimate Std err. Estimate Std err.
Covariance-matrix estimator St
P1 0.831 0.043 0.782 0.061 0.766 0.053
B 2.631 0.486 3.591 0.566 3.619 0.385
y 0.712 0.388 0.489 0.372 0.435 0.309
a -0.585 1.465 -2.836 2.479 -2.982 2.277
J-statistic (stat. / p-val.) 9.765 0.370 6.371 0.702 6.180 0.722
Covariance-matrix estimator S,
P1 0.875 0.031 0.938 0.030 0.837 0.014
B 3.025 0.449 6.000 2.296 2.725 0.141
y 1.377 0.261 1.725 1.101 1.279 0.337
a -1.249 1.188 -8.117 6.833 -0.369 0.313
J-statistic (stat. / p-val.) 23.393 0.005 14.006 0.122 13.152 0.156
Covariance-matrix estimator S;¢
P1 0.848 0.025 0.932 0.024 0.804 0.018
B 2.568 0.248 6.979 2.302 2.107 0.412
y 0.937 0.126 2.312 1.036 1.566 0.420
a -0.208 0.811 -11.25 6.854 1.755 0.802
J-statistic (stat. / p-val.) 28.798 0.001 29.057 0.001 13.33 0.148




Table 2: ML estimates (1979:0Q3-2000:0Q3)

Reaction function Phillips curve I-S curve

Estimate Std err. Estimate Std err. Estimate Std err.
P1 0.713 0.060 a;p 0.501 0.120 By1 1.113 0.111
B 1.879 0.272 ao 0.022 0.150 By -0.192 0.101
y 0.020 0.271 a3 0.401 0.152 B, -0.089 0.056
a 1.368 1.312 a4 0.076 - Bo 3.193 1.227

a, 0.127 0.043

Statistic p-value Statistic p-value Statistic p-value
Q(4) 5.364 0.252 Q(4) 0.869 0.929 Q4) 5.337 0.254
Q(8) 15.973 0.043 Q(8) 7.070 0.529 Q(8) 8.909 0.350
R(4) 36.567 0.000 R(4) 4,539 0.338 R(4) 19.543 0.001
R(8) 47.681 0.000 R(8) 10.394 0.238 R(8) 36.886 0.000
J-B 125.284 0.000 J-B 1.405 0.495 J-B 25.104 0.000
see 1.016 see 0.793 see 0.695
log-L -295.214




Table 3a: Monte-Carlo simulation of the ML model (sample size: T=85)

P, (true value: 0.71)

P (true value: 1.88)

y (true value: 0.02)

Rejection rate

Mean Std dev 10% Median 90% | Mean Std dev 10% Median 90% | Mean Std dev 10% Median 90% 1% 5% 10%
GMM
Covariance-matrix estimator St
Two-step 068 011 053 069 080 200 051 158 195 247/ 0.03 050 -039 0.00 049 029 0.47 0.57
Iterative 066 0.12 049 067 080 200 055 155 194 249 0.00 042 -044 -0.03 050 0.08 0.21 0.32
Cont.-updating (5.3%) 055 023 000 061 079 121 2575 121 197 276| -1.62 3229 -1.06 -0.12 050 0.01 0.06 0.14
Truncated CU (10.9%)| 058 020 028 062 079 212 267 146 197 274| -011 154 -0.73 -0.11 050/ 0.01 0.05 0.12
Covariance-matrix estimator S,r
Two-step 068 011 053 069 080/ 197 051 154 192 244 0.02 051 -045 -0.02 052 034 052 0.62
Iterative 064 016 044 067 080 197 053 149 192 248| -0.02 056 -051 -0.05 0.50f 0.12 0.26 0.37
Cont.-updating (0.1%) 0.60 0.18 0.25 064 0.80| 541 93.02 1.08 193 2.71| -2.82 83.16 -1.08 -0.12 0.52( 0.05 0.16 0.27
Truncated CU (2.4%) 060 017 036 064 0.79] 201 115 141 193 269| -0.14 165 -0.73 -0.12 051 0.05 0.16 0.27
Covariance-matrix estimator S
Two-step 0.67 012 051 068 081 198 049 153 193 250/ 0.02 044 -045 -0.01 051 051 0.66 0.74
Iterative 062 017 040 065 080 197 057 146 191 254 -0.03 0.62 -054 -0.05 049 020 0.34 0.44
Cont.-updating (6.6%) 059 019 023 062 080 331 6780 088 193 282| -1.68 6153 -1.23 -0.09 057 0.09 0.20 0.30
Truncated CU (8.1%) 059 018 034 062 0.79] 179 6.15 133 193 280| -0.16 524 -0.79 -0.09 057 0.06 0.17 0.27
ML 065 008 055 066 075 188 022 162 187 2.15| -0.01 0.27 -0.32 -0.01 0.34| - - -




Table 3b: Monte-Carlo simulation of the ML model (sample size: T=200)

P, (true value: 0.71)

P (true value: 1.88)

y (true value: 0.02)

Rejection rate

Mean Std dev 10% Median 90% | Mean Std dev 10% Median 90% | Mean Std dev 10% Median 90% 1% 5% 10%
GMM
Covariance-matrix estimator St
Two-step 069 006 062 070 077/ 193 018 173 191 215/ 0.00 0.18 -0.21 0.01 0.23[ 0.07 0.18 0.27
Iterative 069 006 061 070 0.76/ 193 0.18 1.73 191 2.16] 0.00 0.18 -0.22 0.00 0.22( 0.03 0.12 0.20
Cont.-updating (0.1%) 0.66 0.10 050 0.68 0.75| -3.63249.12 165 191 219 1.10 5133 -0.37 -0.03 0.21f 0.01 0.09 0.18
Truncated CU (0.5%) 066 009 056 068 0.75 194 027 172 191 219| -0.05 056 -0.28 -0.03 0.21f 0.01 0.09 0.19
Covariance-matrix estimator S,r
Two-step 069 006 061 070 077 192 017 173 191 213 0.01 0.19 -0.22 0.01 0.23[ 0.08 0.20 0.28
Iterative 069 007 060 070 0.76/ 192 0.17 172 190 213 0.00 0.19 -0.23 0.00 0.23[ 005 0.13 0.21
Cont.-updating (0.1%) 066 010 047 068 0.76/ 193 025 165 191 2.18] -0.04 0.24 -041 -0.04 0.21f 0.03 0.11 0.18
Truncated CU (0.3%) 066 010 054 068 0.76] 193 025 171 191 218] -0.04 024 -0.29 -0.04 0.21f 0.03 0.11 0.18
Covariance-matrix estimator S
Two-step 069 007 061 070 077 193 019 173 192 217/ 0.01 020 -0.23 0.00 0.25( 0.18 0.30 041
Iterative 068 007 059 069 077 193 019 172 191 2.17| 0.00 0.20 -0.24 -0.01 0.25( 0.09 0.212 0.29
Cont.-updating (0.1%) 066 0.11 044 068 0.76/ 240 2523 160 192 2.23| -0.77 2147 -0.46 -0.04 0.27( 0.05 0.14 0.23
Truncated CU (0.3%) 066 011 052 068 0.76] 194 043 169 192 223| -0.07 144 -032 -0.04 0.27[ 0.04 0.13 0.22
ML 069 005 063 069 074 188 011 175 188 202/ 0.01 0.16 -0.19 0.01 0.21] - - -




Table 4a: Monte-Carlo simulation of the ML model with serially-correlated monetary policy shock (sample size: T=85)

P, (true value: 0.71)

B (true value: 1.88)

y (true value: 0.02)

Rejection rate

Mean Std dev 10% Median 90% | Mean Std dev 10% Median 90% | Mean Stddev 10% Median 90% 1% 5% 10%
GMM
Covariance-matrix estimator S,
Two-step 081 009 069 082 091 234 079 170 221 3.211f 075 140 -008 051 153 030 052 0.63
Iterative 080 012 064 083 093 260 421 160 227 352 163 750 -0.16 054 229 003 0.12 0.23
Cont.-updating (6.7%) | 0.70 0.23 0.18 0.77 0.93| -0.56 127.22 0.86 224 424 585 4411 -0.84 0.28 248 0.00 0.01 0.03
Truncated CU (12.8%)[ 0.72 0.19 046 077 091 269 337 151 224 409 066 334 -049 0.28 204 000 0.01 0.02
Covariance-matrix estimator S,r
Two-step 081 010 068 0.82 092 242 234 162 220 331 090 297 -015 048 198 0.74 0.87 0.92
Iterative 0.7 019 055 082 094 279 477 141 221 391 165 937 -033 045 266( 025 0.40 0.52
Cont.-updating (3.7%) | 0.73 0.20 0.31 0.77 0.94| 9.01 84.49 034 217 429 9.72132.86 -1.20 0.31 3.25/ 0.04 0.11 0.17
Truncated CU (7.2%) 073 018 049 0.77 093 254 510 129 216 396/ 084 746 -062 030 266/ 0.04 0.11 0.17
Covariance-matrix estimator S
Two-step 081 011 o0.67 0.82 092 248 283 158 217 3.26( 113 811 -0.13 050 1.89| 082 0.92 0.95
Iterative 075 021 051 081 094 258 383 126 216 383 128 429 -036 047 280 030 0.46 0.58
Cont.-updating (7.9%) | 0.72 0.21 029 0.76 095/ 2.81117.43 -1.21 214 4.15| 125112450 -1.75 0.34 2.97| 0.06 0.13 0.18
Truncated CU (12.7%)[ 0.71 020 043 0.76 092 234 6.18 104 214 386/ 125 881 -078 032 241 004 0.11 0.16
ML 075 008 064 075 084 204 033 168 201 245 030 045 -0.16 0.23 0.80[ - - -




Table 4b: Monte-Carlo simulation of the ML model with serially-correlated monetary policy shock (sample size: T=200)

P, (true value: 0.71)

B (true value: 1.88)

y (true value: 0.02)

Rejection rate

Mean Std dev 10% Median 90% | Mean Std dev 10% Median 90% | Mean Stddev 10% Median 90% 1% 5% 10%
GMM
Covariance-matrix estimator S,
Two-step 080 006 072 081 087f 211 025 183 208 244 035 032 -001 032 0.76/ 011 0.28 0.40
Iterative 080 006 072 080 087f 214 029 182 209 250( 038 038 -003 032 085/ 003 0.13 0.23
Cont.-updating (0.5%) | 0.76 0.11 058 0.78 0.87| -3.31246.22 168 209 260/ -2.05 77.12 -0.26 0.22 0.81] 0.00 0.04 0.09
Truncated CU (1.2%) 0.77 010 065 078 0.87 421 6387 177 208 259 020 416 -0.15 0.22 0.81] 0.00 0.04 0.09
Covariance-matrix estimator S,r
Two-step 080 006 072 080 087f 213 031 182 208 248 040 042 000 034 086 026 045 0.56
Iterative 080 007 071 080 0.88 218 077 179 210 263 050 1.02 -0.03 034 099 009 0.24 0.36
Cont.-updating (0.5%) | 0.74 0.15 043 0.78 087 256 1261 160 209 271] -052 4130 -0.47 0.24 0.88] 0.02 0.07 0.13
Truncated CU (1.8%) 075 014 057 078 087/ 215 131 171 209 269 032 124 -022 024 0.86] 0.02 0.08 0.15
Covariance-matrix estimator S
Two-step 081 006 073 081 088 216 030 184 210 254 047 046 002 039 098] 039 059 0.68
Iterative 081 008 071 082 090 232 114 182 214 278 074 179 -003 041 134 015 0.29 0.40
Cont.-updating (4.9%) | 0.75 0.14 048 0.78 0.88| -0.14 73.62 143 211 284 436 7737 -059 0.27 1.06/ 0.02 0.07 0.13
Truncated CU (6.0%) 075 014 059 078 087/ 210 285 170 211 283 040 282 -027 027 102 001 0.06 0.13
ML 077 005 071 077 083 200 017 181 200 221 022 023 -003 020 051 - - -




Table 5: Stability tests

Panel A: GMM estimates (Wald test)

Two-step GMM Iterative GMM

statistic p-value statistic p-value
Covariance-matrix estimator S, 28.67 0.00 20.03 0.00
Covariance-matrix estimator S, 132.94 0.00 86.60 0.00
Covariance-matrix estimator S5 133.84 0.00 90.72 0.00

Panel B: ML estimates (LR test)

Model Null hypothesis log-L LR statistic p-value dof
Shift in all parameters - -223.57
Shift in macroeconomic parameters  Stability of reaction-function parameters -232.24 17.34 0.00 5
Shift in reaction-function parameters Stability of macroeconomic parameters -227.87 8.60 0.38 8
No shift Stability of all parameters -295.15 143.17 0.00 13




Table 6: GMM estimates (1987:0Q3-2000:Q3)

Panel A Panel B Panel C
Two-step GMM Iterative GMM Continuous-updating GMM
Estimate Std err. Estimate Std err. Estimate Std err.

Covariance-matrix estimator St
P1 1.327 0.097 1.321 0.093 1.305 0.067
P2 -0.519 0.092 -0.512 0.091 -0.504 0.064
B 1.661 0.337 1.696 0.346 1.755 0.247
y 0.647 0.159 0.669 0.156 0.684 0.136
a 1.807 0.883 1.741 0.907 1.536 0.768
J-statistic (stat. / p-val.) 3.361 0.910 2.627 0.956 2.440 0.965
Covariance-matrix estimator S,
P1 1.336 0.074 1.330 0.075 1.321 0.059
P2 -0.530 0.080 -0.522 0.082 -0.520 0.064
B 1.648 0.295 1.686 0.303 1.581 0.196
y 0.689 0.151 0.737 0.145 0.896 0.132
a 1.826 0.776 1.765 0.788 2.243 0.626
J-statistic (stat. / p-val.) 7.014 0.535 4.060 0.852 3.337 0.911
Covariance-matrix estimator S
P1 1.333 0.056 1.310 0.051 1.297 0.041
P2 -0.527 0.062 -0.494 0.059 -0.504 0.043
B 1.662 0.291 1.717 0.308 1.897 0.261
y 0.647 0.154 0.784 0.153 0.698 0.110
a 1.807 0.847 1.671 0.909 1.097 0.846
J-statistic (stat. / p-val.) 7.306 0.504 5.779 0.672 4,232 0.836




Table 7: ML estimates of the backward-looking model with a shift in the reaction-function parameters (1979:0Q3-2000:Q3)

Reaction function Reaction function Phillips curve I-S curve
(1979:Q3-1987:Q2) (1987:Q3-2000:Q3)
Estimate Std err. Estimate Std err. Estimate Std err. Estimate Std err.
P1 0.564 0.135 P1 1.293 0.094 an 0.402 0.110 By1 1.191 0.115
fo) - P2 -0.492 0.079 ao 0.011 0.087 By -0.243 0.126
B 1.493 0.196 B 1.523 0.240 a3 0.335 0.103 B, -0.051 0.039
y - y 0.511 0.187 a4 0.252 - Bo 3.434 1.433
a 3.708 0.821 a 2.147 0.606 a, 0.153 0.038
Statistic p-value Statistic p-value Statistic p-value Statistic p-value
Q(4) 3.044 0.550 Q(4) 3.119 0.538 Q(4) 1.424 0.840 Q(4) 2.981 0.561
Q(8) 8.386 0.397 Q(8) 10.146 0.255 Q(8) 6.739 0.565 Q(8) 5.210 0.735
R(4) 14521 0.006 R(4) 1.443 0.837 R(4) 0.744 0.946 R(4) 2.966 0.564
R(8) 13.733 0.318 R(8) 5.286 0.948 R(8) 6.680 0.878 R(8) 6.743 0.874
J-B 3.621 0.164 J-B 1.893 0.388 J-B 1.448 0.485 J-B 2.456 0.293
see 1.488 see 0.293 see 0.810 see 0.696
log-L -230.571




Table 8: ML estimates of the hybrid model with a shift in the reaction-function parameters (1979:0Q3-2000:Q3)
Reaction function Reaction function Phillips curve I-S curve
(1979:Q3-1987:Q2) (1987:Q3-2000:Q3)
Estimate Std err. Estimate Std err. Estimate Std err. Estimate Std err.
P1 0.605 0.154 P1 1.287 0.093 Hn 0.307 0.156 Uy 0.440 0.026
fo - P2 -0.497 0.077 an 0.409 0.144 Uy 0.785 1.367
B 1.584 0.268 B 1.653 0.264 am -0.110 0.164 By 1.223 0.093
y - y 0.511 0.198 fo 0.362 0.152 By -0.224 0.093
a 3.275 1.280 a 1.781 0.708 a4 0.338 - B, (x100  -0.584 0.697
a, 0.080 0.047 Bo 3.694 0.624
Statistic p-value Statistic p-value Statistic p-value Statistic p-value
Q(4) 12.703 0.013 Q(4) 2.313 0.678 Q(4) 0.750 0.945 Q4) 6.167 0.187
Q(8) 16.521 0.169 Q(8) 8.958 0.707 Q(8) 7.331 0.835 Q(8) 4,941 0.960
R(4) 4.020 0.403 R(4) 3.081 0.544 R(4) 1.628 0.804 R(4) 2.880 0.578
R(8) 10.341 0.242 R(8) 9.362 0.313 R(8) 6.953 0.542 R(8) 5.405 0.714
J-B 3.604 0.165 J-B 1.579 0.454 J-B 1.932 0.381 J-B 1.239 0.538
see 1.452 see 0.296 see 0.803 see 0.668
log-L -225.616
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Figure 2a: Distribution of parameter estimators
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Figure 2b: Distribution of estimators of g
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