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Abstract

Inflation risk premiums tend to be positive in an economy mainly hit by supply
shocks, and negative if demand shocks dominate. Risk premiums also fluctuate with
risk aversion. We shed light on this nexus in a linear-quadratic equilibrium macro-
finance model featuring time variation in inflation-consumption correlation and risk
aversion. We obtain analytical solutions for real and nominal yield curves and for
risk premiums. While changes in the inflation-consumption correlation drive nominal
yields, changes in risk aversion drive real yields and act as amplifier on nominal yields.
Combining a trend-cycle specification of real consumption with hysteresis effects gen-
erates an upward-sloping real yield curve. Estimating the model on US data from 1961
to 2019 confirms substantial time variation in inflation risk premiums: distinctly posi-
tive in the earlier part of our sample, especially during the 1980s, and turning negative
with the onset of the new millennium.

Keywords: Term structure model, inflation risk premiums, demand and supply, risk aversion.
JEL codes: E43, E44, C32
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Non-technical summary

Changes in the shape of the yield curve can stem from various sources: shifting inflation expecta-
tions, re-assessments of the overall health of the economy, variation in risk aversion or movements
in uncertainty and perceived risk. These factors typically have different effects across maturities,
on real versus nominal bond yields, and on average short-term rate expectations versus risk premi-
ums. While traditional reduced-form models of the term structure of interest rates lack the ability
to distinguish between these drivers and their effects, this paper presents a new equilibrium model
based on a representative agent with recursive preferences and exogenous factors governing the
consumption growth and inflation processes to price the term structure of nominal bond yields,
real interest rates and inflation compensation.

The model introduces three innovations compared to existing equilibrium models, while re-
maining tractable to derive analytical pricing formulas. First, our specification comes with time-
varying risk aversion in the recursive preferences which helps generate time variation in real and
nominal term premiums. Second, the model introduces a mechanism to create a time-varying cor-
relation between consumption growth and inflation so that the relative importance of supply versus
demand shocks hitting the economy can vary over time. This mechanism is an important determi-
nant of the sign and size of inflation risk premiums and nominal term premiums. Third, the model
is able to generate a real yield curve that is upward-sloping on average – a pattern that is observed
in the data but that most existing equilibrium models fail to provide. To that end, we add a cyclical
component – or output gap – in the consumption level process, whereby expected consumption
growth can be positive in a context of a negative output gap, resulting in real bonds whose rates
are linked to expected consumption growth that lose value in bad states of the world. The positive
premium that is demanded by agents to hold these bonds is amplified by means of hysteresis effects
whereby cyclical consumption shocks can exert enduring impacts on real growth.

The estimation of the model with US quarterly data from 1961 to 2019, including consumption
growth, inflation, nominal bond yields, inflation-linked bond yields as well as survey information
on future interest rates and inflation, leads to the following empirical findings. First, the mecha-
nism for generating positive average real term premiums manifests itself empirically. Second, risk
aversion shows distinct time variation with plausible dynamics. Despite being inferred only from
macro and bond price information, risk aversion captures several salient bouts of changing risk ap-
petite as suggested by other measures that incorporate stock market information. Third, the model
generates time variation in the correlation between consumption growth and inflation, signalling
a clear dominance of supply shocks in the late 1970s and 1980s, and a more demand-dominated
pattern since the 1990s. Fourth, risk aversion drives nominal term premiums by giving rise to real
term premiums as well as by amplifying inflation risk premiums.
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1 Introduction

Changes in the shape of the yield curve can stem from various sources: shifting inflation expecta-

tions, re-assessments of the overall health of the economy, variation in risk aversion or movements

in uncertainty and perceived risk. These factors typically have different effects across maturi-

ties, on real versus nominal bond yields, and on average short-term rate expectations versus risk

premiums. While traditional reduced-form models of the term structure of interest rates lack the

ability to distinguish between these drivers and their effects, equilibrium term structure models

have the capacity to shed light on the underlying economic mechanisms and on their quantitative

relevance. As a result, they have gained heightened attention and momentum over the last decade.

Following the definition of Piazzesi and Schneider (2007), equilibrium term structure models fea-

ture risk-averse agents who price bonds in the face of stochastic consumption and inflation. These

models can be viewed as compromises between purely structural models, such as that by Hördahl

et al. (2006) and Dew-Becker (2014), and reduced-form models, exemplified by Ang and Piazzesi

(2003), Christensen et al. (2011), or Joslin et al. (2014).

This paper contributes to this literature with a new equilibrium model based on a representative

agent with Epstein and Zin (1989) recursive preferences and (exogenous) factor processes govern-

ing consumption growth and inflation. We use it to price the term structure nominal bond yields,

real rates and inflation compensation.

The model introduces three innovations. First, unlike the bulk of the literature using Epstein-

Zin preferences our specification comes with time-varying risk aversion. This additional factor

helps generate time variation in real and nominal term premiums.

Second, the model contains a new mechanism that allows for a changing correlation between

consumption growth and inflation. It can thereby generate protracted periods during which the

economy is predominantly hit by supply shocks and others that are driven by demand shocks.

In turn, these changes in the correlation between inflation and consumption growth can become

important determinants of the sign and size of inflation risk premiums and nominal term premiums.

Third, the model is able to generate a real yield curve that is upward-sloping on average – a
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pattern that is observed in the data but that most existing equilibrium models fail to provide (see,

e.g., Kung, 2015).1 At the technical level, an upward sloping real yield curve is only possible if

the real stochastic discount factor is negatively auto-correlated (Backus et al., 1989). Yet, under

standard preference settings such as power utility or Epstein-Zin, real rates are usually positively

influenced by expected consumption growth which, in turn, typically has a strongly positive auto-

correlation in these models. As a result, real term premiums and thus the real yield curve slope

downwards on average in such a setup. Our solution to generating positive real term premiums

on average is simple; it consists in introducing a cyclical component – or output gap – in the

consumption level process. In that case, expected consumption growth can be positive in a context

of a negative output gap. Moreover, as this channel alone yields only minimal (yet positive) real

term premiums, we also allow for hysteresis effects whereby cyclical consumption shocks can

exert enduring impacts on real growth;2 this amplifies the magnitude of these premiums.

Despite these innovations, the model allows for analytical pricing formulas for nominal rate,

real rates – and thus inflation compensation – at any maturity. Specifically, the introduction of time-

varying consumption-inflation correlation renders the model linear-quadratic (rather than purely

linear). The tractability is one of the key differences to Boudoukh (1993) who studies the inflation-

output correlation in a simpler equilibrium model of nominal bond prices without being able to

derive closed-form solutions for bond pricing.

The model is estimated on US quarterly data from 1961 to 2019, including consumption

growth, inflation, nominal bond yields, inflation-linked bond yields as well as survey information

on future interest rates and inflation. The overall fit is remarkably good in view of the diversity of

data from macro, financial and survey sources and the relatively simple and parsimonious struc-

ture of the model, which at the same time imposes strong constraints on the joint dynamics of

1In the context of Dynamic Stochastic General Equilibrium models, Kısacıkoğlu (2020) shows that standard New-
Keynesian models cannot properly account for term structure of real rates.

2The resurgence of interest in such effects, as highlighted by Cerra et al. (2023), stems from the enduring conse-
quences of the global financial crisis on GDP in advanced economies and more recent apprehensions regarding the
lasting effects of the COVID-19 shock. In a recent study, Furlanetto et al. (2021) identify demand shocks that can have
a permanent effect on output through hysteresis effects. Estimated shocks are found to be quantitatively important in
the United States, in particular when the Great Recession is included in the sample.
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state variables. Nominal term premiums behave similar to standard results in the literature (e.g.,

Adrian et al., 2013; Kim and Wright, 2005) and the decomposition into real term and inflation risk

premiums looks plausible.

We highlight the following empirical findings. First, the described mechanism for generating

positive average real term premiums manifests itself empirically: the discussed hysteresis effect is

economically and statistically significant, and the model-implied unconditional expectation of the

slope of the real curve is matched to 0.8 percentage points, mirroring a similar magnitude in the

data. Second, risk aversion shows distinct time variation with plausible dynamics: despite being

inferred only from macro and bond price information, risk aversion captures several salient bouts of

changing risk appetite as suggested by other measures that incorporate stock market information,

such as Pflueger et al. (2019) and Bauer et al. (2023). Third, the model generates time variation in

the correlation between consumption growth and inflation, signaling a clear dominance of supply

shocks in the late 1970s and 1980s, and a largely demand-dominated pattern since the 1990s.

Similar to the findings by Breach et al. (2020), supply-shock dominated phases coincide with

positive and a demand-shock environment with negative inflation risk premiums. Fourth, risk

aversion drives nominal term premiums by creating real term premiums and, importantly, also by

amplifying inflation risk premiums.

Related literature

The paper contributes to the literature on equilibrium term-structure models. We feature time-

varying risk aversion, which Brandt and Wang (2003) and Dew-Becker (2014) demonstrate to

be important for a structural model to satisfyingly fit the yield curve.3 At the technical level we

show that, (a) under Epstein-Zin preferences, (b) with a unit elasticity of intertemporal substitu-

3Dew-Becker (2014) investigates the importance of time-varying risk aversion to account for the dynamics of
nominal yields in the context of a structural New Keynesian model; his model, which does not entails an analytical
solution, is solved numerically. See also Campbell and Cochrane (1999), Gordon and St-Amour (2000), or Melino
and Yang (2003), for discussions regarding the importance of time varying risk aversion for asset pricing in general.
Bekaert and Engstrom (2017), Bekaert et al. (2021), and Bekaert et al. (2022) develop affine asset pricing models with
external habit formation (in the spirit of Campbell and Cochrane, 1999) where risk aversion is time-varying; they do
not consider the ability of their framework to jointly account for the term structures of nominal and real rates.
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tion, and (c) if the risk aversion parameter is part of a state vector that follows a Gaussian vector

auto-regressive process, then the stochastic discount factor (s.d.f.) admits a closed-form solution.

Interestingly, the form of the resulting s.d.f. corresponds to that of standard reduced-form Gaussian

term structure models, where the vector of prices of risk is affine in the state vector (e.g., Cochrane

and Piazzesi, 2005; Piazzesi, 2010; Joslin et al., 2011). To our knowledge, the present paper is

the first to provide a derivation of the standard reduced-form s.d.f. from a structural model with

Epstein-Zin preferences. A related work is that of Creal and Wu (2020) who allow for time vari-

ation in the rate of time preference in the context of Epstein-Zin utility (as in Albuquerque et al.,

2016; Schorfheide et al., 2018), and explore the implication of this feature on the term structure of

nominal rates. In line with Dew-Becker (2014), we find that while fluctuations in risk aversion are

important drivers of yields, there is no significant relationship between risk aversion and the real

economy.

As regards the slope of the real curve, in most equilibrium models, the negative correlation

between real interest rates and the marginal utility of consumption results from a combination of

positively auto-correlated processes giving rise to a negative average slope (e.g., Bansal and Yaron,

2004; Piazzesi and Schneider, 2007; Le et al., 2010; Bansal and Shaliastovich, 2013; Bekaert and

Engstrom, 2017; Schorfheide et al., 2018). In order to generate an upward sloping real yield

curve Wachter (2006) evokes the external consumption habit framework following Campbell and

Cochrane (1999) and shows that it can result in a positive average slope of the term structure of

real rates, yet at the cost of introducing a negative relationship between real rates and surplus con-

sumption. Hsu et al. (2021) show that the upward sloping real curve in these models is due to their

ability generate a negative auto-correlation of habit-adjusted consumption growth for a sufficiently

large habit parameter. Somewhat related, Katagiri (2022) introduces positive real term premiums

by creating a negative relationship between real rates and cyclical income. In another approach

of Zhao (2020), an ambiguity-averse agent faces different amounts of Knightian uncertainty in the

long run versus the short run, making the term structure of expected real rates upward sloping

(rather than introducing positive real term premiums).
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In terms of modelling approach, our paper shares similarities with the literature on time-varying

correlation between nominal bond yields and stock returns. Campbell et al. (2017) study the nom-

inal term structure of yields in a reduced-form linear-quadratic model, while Song (2017) uses a

consumption-based equilibrium model for that purpose.

Our paper also relates to the literature on the joint modeling of nominal and real yield curves.

Using a no-arbitrage model featuring switching regimes to decompose nominal yields into real

and inflation components, Evans (2003) extracts inflation expectations form nominal yields. Ang

et al. (2008) employ the same type of models to study the term structure of real rates in the United

States. Chernov and Mueller (2012) incorporate survey-based forecasts in a reduced-form Gaus-

sian term-structure model allowing for differences between risk-neutral, subjective, and objective

probability measures. Hördahl and Tristani (2012) combine a linear forward-looking macro model

and an essentially affine stochastic discount factor to model the nominal and real yield curves and

estimate the inflation risk premium. As in the present paper, Breach et al. (2020) rely on quadratic

Gaussian term-structure model to explore term premiums. They demonstrate the ability of such a

framework to capture diverse macroeconomic dynamics of inflation and real risk premiums, and

generate sensible estimates of expected inflation and real short rates over a long sample. Our

study demonstrates that these characteristics persist even in a more constrained setting, where the

stochastic discount factor is not in reduced form but stems from explicit risk preferences, and when

the set of observed variables also contains real variables (e.g., consumption).

The remainder of this paper is organized as follows: Section 2 outlines our modeling frame-

work, including an discussion of the model’s ability to capture positive real term premiums; Sec-

tion 3 presents the estimation approach; Section 4 discusses the empirical results; and Section 5

concludes. The appendix provides a technical description of the general econometric set up; it

highlights the dynamic properties of the state variables and provides the pricing formulas. Proofs

and additional results are gathered in the supplemental appendix.
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2 Model

The model economy is a semi-structural macro-finance model in which a representative agent is

faced with exogenous streams of consumption growth and inflation and prices nominal and real

bonds in line with Epstein-Zin preferences. The well-known advantage of these preferences are

their ability to separate the elasticity of inter-temporal substitution from risk aversion, which helps

fit both macro and financial data. Time is indexed with t and refers to quarters.

The model shares many similarities with standard consumption-based asset pricing models,

such as closed-form pricing formulas for yields, but also features two distinctive novelties. First,

risk aversion is time-varying so as to make term premiums time-varying too. Second, the condi-

tional time-t correlation between consumption growth and inflation is made state-dependant and

thus becomes – in addition to risk aversion – another driver of time-varying inflation risk premi-

ums. Both risk aversion and the inflation-consumption correlation are modelled via latent factors.

2.1 The joint dynamics of consumption and inflation

We consider a situation where consumption admits both a permanent (C∗t ) and a transitory zero-

mean component (zt):

Ct =C∗t exp(zt).

Since log(Ct/C∗t ) = zt , it comes that zt can be interpreted as an output gap measure. The aver-

age log-growth rate of C∗t is µc,0, and gt denotes the time-varying component of the permanent

consumption component, that is:

log(C∗t /C∗t−1) = µc,0 +gt .

What precedes implies that the (log) consumption growth is:

∆ct = µc,0 +gt + zt− zt−1,

ECB Working Paper Series No 3012 8



with trend and cyclical components

gt = ρggt−1 +ρgzzt−1 +σgεg,t (1)

zt = ρzzt−1 +σzεz,t , (2)

where εg,t and εz,t are identically and serially uncorrelated standard normal shocks, and ρgz controls

the hysteresis effect of the cyclical component on trend growth. The shock εz,t will also affect the

cyclical component of inflation, but in a heteroskedastic way. To obtain that, we posit that εz,t is a

mixture of two i.i.d. standard normal shocks, namely εz,1,t and εz,2,t :

εz,t =
1√
2
(εz,1,t + εz,2,t), (3)

which is consistent with εz,t ∼ i.i.d.N (0,1). While εz,1,t and εz,2,t have the same (positive) effect

on the output gap zt , they have different effects on inflation. We denote by πt the continuously-

compounded inflation rate between dates t − 1 and t. Inflation is assumed to be the sum of two

stochastic components:

πt = µπ,0 +π
∗
t + π̃t . (4)

While π∗t and επ,t are exogenous – in the sense that they do not correlate to consumption growth

– π̃t is conditionally correlated to consumption growth as it is also affected by the two output-gap

shocks εz,1,t and εz,2,t (underlying equations 2 and 3). Specifically:

π
∗
t = ρπ∗π

∗
t−1 +σπ∗επ∗,t , επ∗,t ∼ i.i.d.N (0,1), (5)

π̃t = ρπ̃ π̃t−1 +σπ,z

(
1+κt−1

2
εz,1,t−

1−κt−1

2
εz,2,t

)
. (6)

Hence π̃t is conditionally correlated to the output gap.4 Importantly, the sign of this conditional

correlation depends on that of κt . In fact, the one-step-ahead conditional covariance between

4If −1 < κ < 1, then εz,1,t and εz,2,t have effects of opposite signs on inflation.
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inflation and consumption growth and that between the cyclical components is proportional to κt :

Covt(πt+1,∆ct+1) = Covt(π̃t+1,zt+1) =
σzσπ,z√

2
κt . (7)

As a result, the correlation of the cyclical parts boils down to Corrt(π̃t+1,zt+1) =
κt√
1+κ2

t
. Intu-

itively, factor κt determines whether the economy is dominantly driven by demand shocks (κt > 0)

or supply shocks (κt < 0). Factor κt follows an auto-regressive process of order one:

κt = µκ + kt , and kt = ρkkt−1 +σkεk,t . (8)

The unconditional mean µκ of that process influences the magnitude and sets the sign of the un-

conditional correlation between inflation and consumption growth.5

2.2 Agent’s preferences

The preferences of the representative agent are of the Epstein and Zin (1989) type, with a unit elas-

ticity of intertemporal substitution (EIS). Using a unit EIS facilitates the resolution, i.e., the com-

putation of the stochastic discount factor with closed form solutions (e.g., Piazzesi and Schneider,

2007; Seo and Wachter, 2018, among others).

Specifically, the time-t log utility of a consumption stream (Ct) is recursively defined by6

ut = logUt = (1−δ )ct +
δ

1− γt
log(Et exp [(1− γt)ut+1]) , (9)

where ct denotes the logarithm of the agent’s consumption level Ct , δ the pure time discount factor

5Equations (5) to (8) also imply that the inflation process is heteroskedastic with Vart(πt+1) = σ2
π∗+(1+κ2

t )
σ2

π,z
2 .

The time fluctuations of this conditional variance are however limited given that kt is typically contained in [−1,1].
Only with kt in that range we can have meaningful interpretations of the two shocks driving the cyclical components
of consumption and inflation as ’supply’ and ’demand’ shocks as they will have effects with opposite sign on inflation.
Technically, one could also introduce heteroskedasticity in π∗t . However, since consumption is independent of this
factor, this would only result in minimal variation in the inflation risk premium (through convexity terms).

6Eq. (9) is the limit of the general Epstein and Zin (1989) recursive utility as the EIS approaches one.
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and γt is the risk aversion parameter. The latter is assumed to be time-varying:

γt = µγ,0 +wt +mt , (10)

with

wt = ρwwt−1 +σwεw,t and mt = ρmmt−1 +σmεm,t . (11)

The two factors wt and mt are exogenous sources of variation in γt and serve as fast- and slow-

moving components in risk aversion. This distinction will become important for the pricing of

longer-term bonds.

2.3 Gaussian linear-quadratic state-space representation of the model

The model outlined above can be cast into a quadratic state-space representation, a formulation

that will prove useful for pricing and estimation purpose.

First, consumption growth and risk aversion are affine in Xt = [gt ,zt ,zt−1,wt ,mt ,kt ]
′:

∆ct = µc,0 +

[
1 1 −1 0 0 0

]
︸ ︷︷ ︸

µ ′c,1

Xt (12)

γt = µγ,0 +

[
0 0 0 1 1 0

]
︸ ︷︷ ︸

µ ′
γ,1

Xt . (13)

Further, we have

πt = µπ,0 +µ
′
π,ZZt , (14)

with Zt = [π∗t π̃t ]
′, and µπ,Z = [1 1]′.

The joint dynamics of Xt and Zt can be represented as follows:

 Xt

Zt

 =

 Φ 0

0 ΦZ


 Xt−1

Zt−1

+
 Σ

ΣZ(Xt−1)

εt , εt ∼ i.i.d.N (0, Inε
), (15)
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where εt = [εg,t ,εz,1,t ,εz,2,t ,εw,t ,εm,t ,εk,t ,επ∗,t ]
′, and where ΣZ(X) linearly depends on X , which

means it satisfies:

vec(ΣZ(Xt)) = Γ0 +Γ1Xt . (16)

Appendix A provides the expanded expressions of Φ, Σ, ΦZ , Γ0 and Γ1.

Importantly, the dynamics of [X ′t ,Z
′
t ]
′ is of the Gaussian linear-quadratic type, which makes it

particularly tractable (e.g., Leippold and Wu, 2002; Ang et al., 2011; Kim and Singleton, 2012;

Breach et al., 2020). More formally, the augmented state vector Yt = [X ′t ,Z
′
t ,vech(XtX ′t )]

′ is an

affine process, in the sense that its one-period-ahead conditional Laplace transform is exponential

affine in its current value (see, e.g., Duffie et al., 2002). That is:

Et(exp(u′Yt+1)) = exp
(
ψY,0(u)+ψY,1(u)′Yt

)
, (17)

where the functions ψY,0 and ψY,1 admit simple closed-form solutions (Proposition 2 in Appendix C).

The affine property of the augmented state-vector ensures that multi-horizon Laplace transforms

can be computed in a fast way, which is key to price long-dated financial instruments.

2.4 Stochastic discount factor, risk-neutral dynamics, and bond prices

A key implication of the model outlined above is that the stochastic discount factor (s.d.f.) admits

an exponential affine expression. More generally, as demonstrated in Appendix C (Proposition 1),

when (i) agents feature Epstein-Zin preferences with unit EIS, (ii) when both the consumption

growth rate and the risk aversion parameter are affine functions of a factor Xt (as in eqs. 12 and

13), and (iii) if Xt follows a Gaussian vector auto-regressive process (as in eq. 15), then the (real)

s.d.f. admits the exponential affine expression:

Mt,t+1 = δ

(
Ct+1

Ct

)−1 U1−γt
t+1

Et(U
1−γt
t+1 )

(18)

⇔Mt,t+1 = exp
[
−(η0 +η1

′Xt)+λ
′
t Xt+1−λ

′
t ΦXt−

1
2

λ
′
t ΣΣ

′
λt

]
, (19)
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where λt , the vector of prices of risk, is affine in Xt , i.e., λt = λ0 +λ ′1Xt . The expressions of η0,

η1, λ0, and λ1 are given in Proposition 1. The short-term real rate rt is affine in Xt :

rt =− log[Et(Mt,t+1)] = η0 +η
′
1Xt . (20)

It is worth noting that the s.d.f. expression (19) corresponds to the reduced-form specification

underlying the Gaussian Term Structure Models (GTSMs) with affine prices of risk popularized

by Ang and Piazzesi (2003) and Kim and Wright (2005). To our knowledge, the present paper is

the first to provide a structural interpretation of the reduced-form specification by deriving it from

the standard s.d.f. in eq. (18) implied by Epstein-Zin preferences with unit EIS.

Equation (19) characterizes the real s.d.f. The nominal s.d.f., given by Mt,t+1 exp(−πt+1), is

also exponential affine, but in the extended state vector Yt . Since πt linearly depends on Yt , which

is an affine process, it comes that the nominal short-term rate is also affine in Yt . Formally:

it =− log[Et(Mt,t+1 exp(−πt+1))] = η
$
0 +η

$
1
′
Yt . (21)

With the s.d.f. in hand, we can define the risk-neutral dynamics of the state vector. The risk-

neutral measure (Q) is obtained, relative to the physical measure (P), by applying the Radon-

Nikodym derivative Mt,t+1/Et(Mt,t+1). Proposition 5 (Appendix C) shows that the conditional

risk-neutral Laplace transform of Yt is of the same form as its physical counterpart. This implies

that Xt and Zt exhibits the same type of dynamics under Q as under P – albeit with a different

parameterization. Importantly, the dynamics of the extended state vector Yt is also affine under the

risk-neutral measure, which opens the door to the affine pricing machinery (Duffie et al., 2002).7

This is illustrated by the next subsection.

Since the real and nominal short-term rates are affine in Yt (see eqs. 20 and 21), and because

the latter is affine under the risk-neutral measure, it comes that the yields-to-maturity of real and

7This is ensured as soon as Yt is an affine process under P and that the Radon-Nikodym derivative is exponential
affine in Yt .
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nominal zero-coupon bonds of any maturity h are affine in Yt . Specifically:

rt,h = αh +β
′
hXt , and it,h = α

$
h +β

$
h
′
Yt , (22)

where (αh,βh) and (α$
h ,β

$
h ) are given in Propositions 6 and 7, respectively.

2.5 The term structure of real rates

This paper aims to build an equilibrium model that captures the joint dynamics of the real and

nominal term structures of interest and makes it possible to decompose real and nominal interest

rates into their two components (expectations and term premiums). For that, a necessary condition

is for the model to reproduce the average slopes of the term structures of real and nominal yield

curves that we observe in the data. The average slopes of the yield curves also correspond to the

average term premiums.8 However, as mentioned in the introduction, the literature on equilibrium

term structure models points to the difficulty these models have in accommodating the average

upward-sloping term structure of real rates or, equivalently, upward-sloping real term premiums

(e.g., Piazzesi and Schneider, 2007; Zhao, 2020; Ellison and Tischbirek, 2021). It is important to

note that these difficulties mainly concern real rates, the average slope of nominal rates being easily

fixed – in any type of equilibrium model – by adjusting the average covariance between inflation

and consumption growth.

Bond term premiums are the components of bond yields that result from agents’ risk aversion.

For a given maturity (h, say), the term premium is usually defined as the difference between the

yield-to-maturity of a maturity-h bond and the expected return of a strategy that involves rolling

over one’s investment at each period, by placing it in a one-period bond (over the next h periods).

If agents were not risk averse, term premiums would be zero. Accordingly, the standard definition

8Taking expectations of both sides of (23) gives: E(T Pt,h) = E(rt,h)−E(rt) and E(T P$
t,h) = E(it,h)−E(it).
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of the real and nominal term premiums are, respectively (e.g., Gürkaynak and Wright, 2012):

T Pt,h = rt,h−Et

(
1
h
(rt + · · ·+ rt+h−1)

)
, and T P$

t,h = it,h−Et

(
1
h
(it + · · ·+ it+h−1)

)
, (23)

which also means that each type of interest rate comprises two components: an expectation part

and the term premium.

Real term premiums depend on two ingredients: agents’ risk preferences and the consumption

process. Let us focus on the second ingredient. In most equilibrium term-structure models, the

modeling of the consumption process is generally based on that of the consumption growth rate.

Specifically, in the spirit of the long-run risk (LRR) literature initiated by Bansal and Yaron (2004),

these studies usually consider that the consumption growth rate is a combination of volatile and

autoregressive components. As shown in Supplemental Appendix III, these specifications mechan-

ically lead to negative real term premiums in the context of power-utility time-separable utilities.

This Supplemental Appendix also shows that real term premiums can become positive when we

introduce a cyclical component to the consumption level (such as our zt factor). To get the intu-

ition behind this result, notice that, in equilibrium models, real rates positively depend on expected

consumption. As a result, in those specifications where consumption growth is positively auto-

correlated – as is the case in LRR models – real rates tends to be lower when consumption is low.

Hence, the price of (real) bonds tend to be higher in bad states of the world – states of high marginal

utilities. Real bonds therefore constitute hedges against bad states of the world, which leads agents

to buy them even if their yield-to-maturity are lower than expected future short-term rates; this ac-

counts for the negative real premiums. The mechanism is different when the consumption process

– in levels – admits a cyclical component (such as zt). Indeed, in that case, expected consumption

may be negatively correlated to the value of the cyclical component. To be sure, if ct = zt and if

zt = ρzt−1 + εt (with 0 < ρ < 1 and Et(εt+1) = 0), then Et(∆ct+1) = (ρ−1)ct . Since ρ−1 < 0,

it comes that expected consumption growth is higher when consumption is low. In this situation, a

real bond loses value in bad states of the world, leading to a positive term premium.9

9Supplemental Appendix III.3 compares the model-implied second-order moments of consumption growth with
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What precedes indicates that the introduction of cyclical components in the level of consump-

tion can help generating positive real term premiums. It however appears that this results in term

premiums of limited size. Hysteresis effects can help amplify real risk premiums. Generally speak-

ing, hysteresis effects are mechanisms through which demand shocks can exert enduring impacts

on real output. In our specifications, hysteresis effects are introduced through parameter ρgz in

eq. (1) connecting the output gap to trend consumption growth. Appendix III.4. discusses how this

hysteresis channel amplifies the dynamic effect of recessions on both cyclical consumption growth

and trend growth, and how it eventually affects real term premiums.

3 Estimation approach

The model is defined in eqs. (1) to (14) and consists of the state vector Xt = [gt ,zt ,zt−1,wt ,mt ,kt ]
′

that drives real variables, of the extended state vector Yt = [X ′t ,Z
′
t ,vech(XtX ′t )]

′ with Zt = [π∗t , π̃t ]
′

for nominal variables, the innovation vector εt = [εg,t ,εz,1,t ,εz,2,t ,εw,t ,εm,t ,εk,t ,επ∗,t ]
′, and the pa-

rameters θ = [ρg,ρz,ρw,ρm,ρk,σg,σz,σw,σm,σk,ρπ∗ ,σπ∗,ρπ̃ ,σπ,z,µπ ,µc,µγ ,µκ ,δ ,ρg,z].

We estimate the model and these 20 parameters by maximizing the likelihood function, using

quarterly data for the United States from 1961Q2 until 2019Q4. For that purpose, we cast the

model into a linear-quadratic state-space representation (see Subsection 2.3 for the state dynamics).

The computation of the quasi likelihood function is based on the Quadratic Kalman Filter (QKF)

introduced by Monfort et al. (2015), that specifically handles the estimation of Gaussian linear-

quadratic models. This filter runs under the assumptions that observed variables are affine in the

extended state vector Yt , which is the case for the observed variables we consider (listed in Table 1).

The filter exploits the fact that the dynamics of the extended state vector takes the form of a linear

their empirical counterparts. It demonstrates that the current specification, which includes an output gap, effectively
aligns several moments with the data, unlike models that treat consumption growth as purely autoregressive. Specifi-
cally, when the output gap is incorporated into the model, it implies a small correlation between GDP growth (∆ct ) and
expected GDP growth (Et∆ct+1), which mirrors the observed data (proxying expected consumption growth by SPF-
based GDP forecasts). This stands in contrast to a purely autoregressive consumption growth model, which yields a
correlation of one. Additionally, it is noteworthy that the output-gap specification qualitatively captures two key facts:
(a) the autocorrelation of consumption growth (Corr(∆ct ,∆ct+1)) is low, while (b) the autocorrelation of expected
consumption (Corr(Et−1∆ct ,Et∆ct+1)) is relatively high.
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vector auto-regressive process whose conditional covariance is not constant but depends linearly

on the lagged state. See Appendix B for additional details.

As observable variables, we include real per-capita consumption growth, CPI inflation and, for

reasons of data availability, a GDP-based output gap for the macroeconomic block. The financial

block consists of nominal yields with maturities of three months (corresponding to one period in

our quarterly model) and then 2 to 20 years, taken from Liu and Wu (2021), as well as real yields

based on TIPS with maturities from 2 to 20 years, taken from Gürkaynak et al. (2007).10 On top

of the pure financial and macroeconomic variables, we also incorporate survey-based forecasts

among the observed variables. This approach, popularized by Kim and Wright (2005) and Kim

and Orphanides (2012), aims at capturing better the typically high persistence in the estimation of

term structure models (e.g., Jardet et al., 2013; Bauer et al., 2012). We include surveys on average

inflation (CPI10) and the average short-term interest rate (BILL10) over the next 10 years taken

from the Survey of Professional Forecasters of the Federal Reserve Bank of Philadelphia to anchor

the average expectations of these variables in the model. While CPI10 is available at a quarterly

frequency, we linearly interpolate the slow-moving BILL10 which is only made available once

a year. Furthermore, we include survey-data for the perceived inflation target (PTR) and for the

expected federal funds rate in the long run (RTR) used in the FRB/US model (Brayton et al., 2014)

to anchor the endpoints of expected inflation and the expected short-term nominal rate. We assume

the endpoints to be reached in 10 years’ time.

Our econometric model comprises 16 measurement equations to match the observed variables

listed in Table 1 with their model-implied counterpart plus measurement errors. The feasibility

of this approach relies on the existence of (i) analytical pricing formulas (see Appendix D) and

(ii) analytical moment formulas (see Supplemental Appendix II). The standard deviation of the

measurement error for the output gap measured in percent is set to 0.2 percentage points and for

10In an earlier version of this paper, we experimented with different yield data. Our results remain highly robust to
using the nominal yields of Gürkaynak et al. (2007) together with the three-month Treasury bill rate from FRED, and
augmenting the dataset to the extent possible with backcasted real rates from Groen and Middeldorp (2013) due to the
relatively late existence of TIPS. Other attempts to address the short TIPS sample by using model-implied real rates
of Haubrich et al. (2012) or D’Amico et al. (2018) were less promising due probably to the differences between our
and their model approaches, which – for example – explicitly addresses liquidity premiums in TIPS yields.
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Table 1: Observable variables and model counterparts

Type Variable Mean S.D. Min Max First date Model ×100
Macro Consumption 0.55 0.65 −2.58 2.49 Jun-1961 ∆ct

CPI inflation 0.92 0.81 −3.48 4.08 Jun-1961 πt
Output gap −0.86 2.33 −8.16 5.59 Jun-1961 zt

Nominal YLD3M 4.65 3.23 0.03 15.34 Jun-1961 it
yield YLD02 5.22 3.24 0.25 15.72 Jun-1961 it,8

YLD05 5.67 3.01 0.64 15.20 Jun-1961 it,20
YLD10 6.26 2.94 1.51 14.94 Sep-1971 it,40
YLD20 6.30 2.91 1.97 14.78 Sep-1981 it,80

Real TIPSY02 0.56 1.58 −2.10 4.22 Mar-1999 rt,8
yield TIPSY05 1.09 1.47 −1.68 4.28 Mar-1999 rt,20

TIPSY10 1.58 1.27 −0.74 4.29 Mar-1999 rt,40
TIPSY20 1.92 1.07 0.24 4.24 Mar-1999 rt,80

Survey RTR 5.16 1.64 2.39 9.72 Jun-1961 Et it+40
PTR 3.19 1.56 1.68 7.72 Jun-1961 µPCE

π +4Etπ
∗
t+40

BILL10 3.67 0.89 2.37 5.22 Mar-1992 1
40 ∑

40
h=1Et it+h

CPI10 2.62 0.44 2.14 4.02 Dec-1991 4
40 ∑

40
h=1Etπt+h

Notes: All variables are expressed in percent and growth/inflation rates are quarter-on-quarter. Data runs from the date
indicated in the table until 2019Q4. Consumption refers to the real per-capita growth rate based on population, nominal
consumption of all goods and services and the related price index from the Bureau of Economic Analysis. CPI inflation
refers to all items from the Bureau of Labor Statistics. Output gap is log real GDP from the Bureau of Economic
Analysis minus log potential GDP from the Congressional Budget Office. Nominal (YLDX) and real (TIPSX) interest
rates are from Liu and Wu (2021) and Gürkaynak et al. (2007) respectively. The perceived inflation target (PTR) and
the expected federal funds rate in the long run (RTR) are from the FRB/US model (Brayton et al., 2014). Survey
of Professional Forecasters (SPF) data (mean of forecasts) are from the Federal Reserve Bank of Philadelphia for
averages over the next ten years of CPI inflation (CPI10) and of the 3-month treasury bill rate (BILL10).

the other 15 variables, which are all growth rates or yields expressed in percent, to 0.1 percentage

points. The higher value for the output gap accounts for the fact that it is based on potential output

which is an estimated and not an observed variable itself. Likewise, RTR before 1984 is based on

constructed and not observable data and thus the standard deviations of its measurement error is

also doubled in those periods. Finally, due to massive outliers in quarter-on-quarter inflation and

associated liquidity premiums in TIPS yields in Q3 and Q4 2008 (see Fleckenstein et al., 2014;

D’Amico et al., 2018) the standard deviations of the measurement errors are increased tenfold for

those individual observations.

Whereas PTR refers to PCE inflation, the other inflation rates refer to the CPI. The measure-

ment equation for PTR, which is matched to trend inflation, takes into account that CPI inflation

ECB Working Paper Series No 3012 18



was on average 44 basis points higher in annualised terms than PCE inflation in our sample.11

While an unconstrained estimation of the 20 parameters listed in Table 2 results in a satisfac-

tory fit of the observed data, it fails to provide satisfactory unconditional moments. Hence, we

freely estimate all parameters except µc, µγ , σm and σk which are estimated via nested constraints.

Specifically, conditional on the other parameters in the estimation, the parameters µc and µγ are

chosen such that the model-implied unconditional real rates at the 2 and 10 year maturity match

1.5 and 2.3 percent respectively. Our matched real rates imply a positive slope of the real yield

curve of 0.8 percentage points, in line with the literature using US data (see, e.g., Swanson, 2015;

Zhao, 2020; Hsu et al., 2021). The parameter σk is solved for such that the factor κt remains in

the range between -1 and +1 with a very high probability of 99.9 percent. The discussion around

equation 8 clarifies the meaning of that range. Finally, the parameter σm is set to a value such that

the unconditional standard deviation of period-on-period changes in the slow-moving risk aversion

factor mt equals 1. The latter constraint is based on changes rather than levels as the factor mt is

highly persistent and thus its unconditional variance in levels is less meaningful.

4 Empirical results

4.1 Parameter estimates, fit and diagnostics

The resulting parameter values are summarized alongside their estimated standard deviations in

Table 2. All parameters are statistically significant at the 95% confidence level. The auto-regressive

parameters of the macro processes (ρ•) are close to one, including both drivers (w and m) of risk

aversion. The unconditional mean of risk aversion (µγ ) is close to 30. In the literature, estimated

values for the risk aversion parameter in asset pricing models with Epstein-Zin preferences vary

widely from low single digit to high double digit numbers (see, e.g., Bansal et al., 2007; Rudebusch

and Swanson, 2012; Bansal and Shaliastovich, 2013; Chen et al., 2013; Creal and Wu, 2020). The

point estimate of the hysteresis parameter ρg,z, capturing the impact of the consumption/output

11In the notation of the quarterly model, the spread between PCE and CPI inflation equals µPCE
π = 4µπ −0.44/100.
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gap on the growth rate of permanent consumption, see eq. (1), looks small at first glance but it

is economically significant: setting the parameter to zero—ceteris paribus—leads to a marked

increase in the loss function as it makes matching the positive slope of the unconditional real yield

curve much more costly for the other parameters. The unconditional mean µκ of the factor κ ,

controlling the time-varying consumption-inflation correlation, is negative; this implies that the

economy in steady state is in a supply-shock driven environment, in line with an average upward

sloping nominal term structure. The empirical estimate of the yield curve is discussed in more

detail in Subsection 4.2.

Figure 1 shows the fit of observed variables together with the mean absolute fitting error next

to each variable’s name. To produce model-implied variables, we use the filtered estimates of

Xt (and thus of XtX ′t ) and Zt resulting from the QKF. The overall fit is remarkably good in view

of the diversity of data from macro, financial and survey sources and the relatively simple and

parsimonious structure of the model, which at the same time imposes strong constraints on the

joint dynamics of state variables.

The macro variables (real consumption growth, inflation, and the output gap) are fitted well.

Figure 2 shows that the inflation is driven by fluctuations of the cyclical component, π̃ , around the

trend component, π∗, which is moving slowly but considerably within the sample.

Nominal bond yields have a mean absolute fitting error ranging from 9 to 18 basis points across

maturities. For real rates the mean absolute error ranges more narrowly from 17 to 23 basis points

along the term structure. Overall, these pricing errors are not fully comparable to the typically

smaller fitting errors of latent-factor models operating purely on yield information, in particular

for nominal yields. These reduced-form models have greater flexibility in filtering latent factors,

whereas our model variables—including bond yield drivers—operate under the rich parameter

constraints imposed by our preference structure and macro dynamics. Regarding surveys, the

model manages to capture the level and dynamics of our survey variables reasonably well.
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Table 2: Parameter estimation

Description Parameter Point estimate Std. Dev. Confidence range
AR trend growth ρg 0.99038 0.00013 0.99012 0.99064
AR consumption gap ρz 0.96539 0.00041 0.96457 0.96620
AR fast risk aversion ρw 0.93613 0.00083 0.93450 0.93775
AR slow risk aversion ρm 0.98697 0.00053 0.98593 0.98801
AR corr(π,c) factor ρk 0.92078 0.00112 0.91858 0.92297
SD trend growth σg 0.00020 0.00000 0.00020 0.00020
SD output gap σz 0.02850 0.00030 0.02791 0.02910
SD fast risk aversion σw 4.15738 0.11160 3.93740 4.37736
SD slow risk aversion σm 0.99674 0.00013 0.99647 0.99700
SD corr(π,c) factor σk 0.07704 0.00108 0.07492 0.07917
AR trend inflation ρπ∗ 0.99417 0.00030 0.99357 0.99477
SD trend inflation σπ∗ 0.00026 0.00001 0.00025 0.00027
AR cyclical inflation ρπ̃ 0.92839 0.00063 0.92715 0.92963
SD cyclical inflation σπ,z 0.01764 0.00018 0.01728 0.01799
mean inflation µπ 0.01057 0.00029 0.00999 0.01114
mean consumption growth µc 0.00714 0.00006 0.00703 0.00726
mean risk aversion µγ 29.61318 0.29654 29.02869 30.19768
mean corr(π,c) factor µκ −0.38967 0.00511 −0.39975 −0.37960
time discount factor δ 0.99445 0.00005 0.99434 0.99455
hysteresis effect ρg,z 0.00016 0.00001 0.00015 0.00017

Notes: This table shows the model estimates from the Maximum Likelihood Estimation of our state-space model using
a Quadratic Kalman Filter. The covariance matrix of the parameters is obtained via the outer product of gradients.
Conditional on the other parameters in the estimation, µc, µγ , σm and σk are solved to match certain unconditional
moments for real rates, the risk aversion process and the κ process driving the inflation-consumption correlation.
Standard deviations for these four parameters are obtained by drawing 10,000 times from the multivariate normal
distribution of all other parameters and their estimated covariance matrix and then solving for µc, µγ , σm and σk
subject to their constraints. See Subsection 3 for details. The confidence range refers to the 95% confidence interval.
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Figure 1: Model fit
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Notes: This figure compares observed variables with model-implied ones. The model-implied variables depend on the
estimates of the latent factors, i.e., the components of Xt and Zt (see Subsection 2.3; these estimates result from the
Quadratic Kalman Filter (Monfort et al., 2015). The numbers next to each variable’s name indicate the mean absolute
fitting error for observable data points. All variables and errors are expressed in percent.
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Figure 2: Inflation decomposition
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Notes: This figure shows the decomposition of inflation (πt ) into its two components (see eq. 4). The estimated
components are estimated by the Quadratic Kalman Filter.
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4.2 Model-implied unconditional and fitted premiums

The model-implied unconditional mean of the nominal term structure is upward-sloping and stands

somewhat above the sample average of the data (see Figure 3). The latter result stems, among

other things, from the negative estimate of µκ which implies a negative unconditional correlation

between inflation and consumption growth and thus unconditional positive inflation risk premi-

ums that increase with maturity (see also Table 3). At the same time, as the model is sufficiently

dynamic, including a time-varying inflation-consumption correlation, the nominal yields are fit-

ted well over time on average (see dots and circles for comparison in Figure 3) despite the high

unconditional nominal term structure.

The model-implied unconditional expectation of the term structure of real rates is likewise

upward-sloping, which in turn—as we have a stationary model—is due to real term premiums

that are positive on average and increase with maturity. The structural model ingredients for that

feature to arise have been discussed in Subsection 2.5 above: a cyclical component affecting the

level of real consumption, the presence of hysteresis by which cyclical shocks have a permanent

effect on trend consumption growth, and a non-trivial nexus between risk aversion and real term

premiums. The numerical importance of these model features on term premiums are illustrated in

Table 3. While several of the (semi-)structural models in the literature imply an average real term

structure that is downward-sloping or only mildly upward-sloping, our estimation obtains a match

of the real term structure with reasonable parameters. Without hysteresis effects our model would

produce only mildly positive real term premiums, while they would even turn strongly negative

if there was no cyclical growth component. By contrast, leaving out the trend growth component

would raise real term premiums a lot.

Table 3 shows that the volatility of nominal term premiums is about halved when when switch-

ing off the volatility of risk aversion and it is reduced roughly to one seventh when setting the

inflation-consumption correlation to zero. But keeping the inflation-consumption correlation con-

stant at its baseline value hardly changes the volatility of nominal term premiums. This finding is

in line with Creal and Wu (2020) who identify time variation in risk pricing as the main driver of
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Figure 3: Unconditional term structures of interest rates
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Notes: This figure shows (model-implied) unconditional term structures of real and nominal interest rates and the
average of observed and fitted rates over the available sample.

bond term premiums rather than stochastic volatility. The dependence of nominal term premiums

on risk aversion and inflation-consumption correlation reflects a combination of how real term pre-

miums and inflation risk premiums depend on these factors. For real term premiums, the results

confirm that risk aversion is—by construction of our model—the only source of time variation. By

contrast, the variation of inflation risk premiums depends on both variations in risk aversion and

the inflation-consumption correlation to a similar degree.12 Moreover, inflation risk premiums turn

constant if the inflation-consumption correlation is zero. In other words, risk aversion serves as

amplifier of inflation risk premiums and therefore operates only if these are non-constant due to a

non-zero correlation between inflation and consumption growth.

Looking at the estimated premiums over time, the 5-year and 10-year nominal term premiums

12In linear models, a historical or a forecast-error variance decomposition would be used to quantify the contribu-
tions of different shocks. These decompositions are not possible in our linear-quadratic setup.
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Table 3: Effects of various model features on premiums

Nominal term prem. Real term prem. Inflation risk prem.
2 yrs 5 yrs 10 yrs 2 yrs 5 yrs 10 yrs 2 yrs 5 yrs 10 yrs

A. Unconditional means of term premiums
baseline 1.65 2.65 2.84 0.34 0.76 1.14 1.31 1.89 1.70

constant RA 1.65 2.66 2.91 0.35 0.78 1.17 1.31 1.89 1.74
constant corr(π,c) 1.68 2.76 3.12 0.34 0.76 1.14 1.33 2.00 1.98

zero corr(π,c) -0.17 -0.99 -2.11 0.34 0.76 1.14 -0.52 -1.75 -3.25
no hysteresis 0.21 -0.42 -1.61 0.08 0.15 0.17 0.13 -0.57 -1.78

no trend growth 1.76 2.92 3.35 0.45 1.03 1.67 1.31 1.89 1.68
no cyclical growth -0.72 -2.35 -4.40 -0.10 -0.27 -0.52 -0.61 -2.08 -3.88

B. Unconditional standard deviation of term premiums
baseline 1.21 1.91 1.89 0.13 0.24 0.28 1.11 1.72 1.65

constant RA 0.76 1.08 0.90 0.00 0.00 0.00 0.76 1.08 0.90
constant corr(π,c) 0.88 1.54 1.70 0.13 0.24 0.28 0.75 1.30 1.42

zero corr(π,c) 0.13 0.24 0.28 0.13 0.24 0.28 0.00 0.00 0.00
no hysteresis 0.39 0.58 0.55 0.02 0.03 0.01 0.38 0.56 0.53

no trend growth 1.24 1.98 2.01 0.17 0.34 0.42 1.11 1.72 1.65
no cyclical growth 0.08 0.21 0.26 0.04 0.09 0.14 0.07 0.18 0.22

Notes: This table reports the unconditional means and standard deviations of premiums. In addition to the baseline
version, it also shows how the moments are affected when risk aversion is constant at µγ (that is, σw = σm = 0),
the conditional inflation-consumption correlation is constant at µκ (σk = 0) or equals zero (µκ = σk = 0), there is
no hysteresis effect (ρg,z = 0), no trend growth (σg = 0) or no cyclical growth (σz = 0). The computation of the
unconditional moments relies on the analytical formulas given in Supplemental Appendix II.

shown in Figure 4 display reasonable magnitudes and exhibit similar dynamics as two prominent

candidate estimates in the literature by Kim and Wright (2005) (KW) and Adrian et al. (2013)

(ACM). For the sample since 1990, where all three estimates are available, our term premiums are

close to those of KW noting that both approaches rely on survey information, while ACM does not.

Compared to the ‘pure-yields’ model results by ACM that can be compared over the full sample,

our term premiums show similar volatility and persistence but at lower average magnitudes. In

addition, our estimated term premium series does not show a strong trend component. This finding

is in line with the results of Bauer and Rudebusch (2020) despite the fact that they explicitly model

a trend in long-run rate expectations (time-varying i∗) while we have a stationary (yet persistent)

model at work.
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Our model does not explicitly impose a zero lower bound (ZLB) on nominal interest rates. As

stipulated by Kim and Singleton (2012), ignoring the lower bound in a yield curve model may lead

to “overestimates of the volatilities of risk premiums”. As an empirical cross-check, we compared

(available on request) our model-implied term premia to those by Christensen and Rudebusch

(2016), who estimate a shadow-rate model incorporating a lower bound. It turns out that during

the (first) lower-bound period in the US (2009–2015), our term premia are even less volatile than

those of Christensen and Rudebusch (2016). Overall, this finding suggests that ignoring the lower

bound in the model did not lead to major mis-assessment of term premia.

Figure 4: Model-implied nominal yields and associated term premiums
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Notes: The figure displays the 5-year and 10-year model implied nominal term premiums (see Subsection 2.5 and in
particular eq. 23). The right-hand-side plots compare our estimates to those obtained by Kim and Wright (2005) and
Adrian et al. (2013).

Figure 5 shows the estimated 10-year real term premium which has a broadly comparable

volatility as those by D’Amico et al. (2018), yet with a less pronounced negative trend. Finally,

inflation risk premiums displayed in Figure 6 are significantly more volatile than those by D’Amico

et al. (2018), but both the level and the quarterly changes are highly co-moving with their estimate

with a correlation of 0.9 over the common sample since 1983. The match in both figures with a
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survey-implied proxy is unsurprisingly closer as our model includes surveys in the estimation.

Figure 5: 10-year real term premiums

Notes: This figure displays the 10-year real term premium defined as T Pt,h in (23) alongside the estimate of D’Amico
et al. (2018) and a survey-implied proxy, calculated from our data set in Table 1 as T IPSY 10− (BILL10−CPI10).
The red-shaded areas highlight NBER recessions. Sample period: 1961Q2-2019Q4.
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Figure 6: 10-year inflation risk premiums

Notes: This figure displays the 10-year inflation risk premium, given by T P$
t,h−T Pt,h, where the nominal and real term

premiums T P$
t,h and T Pt,h are defined in (23), alongside the estimate of D’Amico et al. (2018) and a survey-implied

proxy, calculated from our data set in Table 1 as YLD10 - TIPSY10 - CPI10. The inflation risk premium can be
understood as the risk premium component of the inflation compensation it,h− rt,h (also called break-even inflation
rate). The red-shaded areas highlight NBER recessions. Sample period: 1961Q2-2019Q4.
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4.3 Risk aversion and term premium dynamics

The model-implied risk aversion exhibits clear time variation, as shown in Figure 7. When inter-

preting the dynamics and gauging its plausibility, it has to be noted that time series of risk aversion

proxies in the literature often rely on stock market information, while our measure of risk aversion

is inferred from the interaction of bond yields and macro data. Nevertheless, the overall dynamics

are fairly similar to related measures in the literature, see Figure 8. Our measure co-moves nega-

tively (absolute correlation of 0.5) with the measure of risk perception proposed by Pflueger et al.

(2019) and similarly with the measure of risk appetite proposed by Bauer et al. (2023). Overall,

we judge our filtered risk aversion as exhibiting relatively plausible dynamics. The average level

of estimated risk aversion is 30 and is therefore in the same ballpark of other studies: for instance,

Bansal and Shaliastovich (2013) obtain a level of around 20.

Without using stock market data, our risk aversion captures the buoyant US stock market in the

sixties (low risk aversion, low excess returns), high levels of risk aversion in the turbulent 1970s,

a low risk aversion and low equity premiums in the 1980s and late 1990s, followed by the reversal

coinciding with the burst of the tech-stock boom in the early 2000s and in the aftermath of the

global financial crisis as of 2008. The negative trend in our risk aversion measure as of 2010 could

reflect the large-scale asset purchases of the Federal Reserve which contributed to a compression

of term premiums (see, e.g., Li and Wei, 2013). Lower premiums due to quantitative easing is not

accounted for in our model and thus shows up in lower risk aversion. The biggest discrepancy with

other measures of risk aversion is the lack of the upward spike at the height of the global financial

crisis in 2008. In fact, our model would produce a big drop—rather than a spike—in risk aversion

due to the collapse of quarter-on-quarter inflation and simultaneous surges in liquidity premiums

for TIPS bonds if we had not set higher standard deviations for the measurement errors of inflation

and real yields in the second half of 2008 (see Section 3). D’Amico et al. (2018) estimate that TIPS

yields exceeded risk-free real yields by up to 300 basis points during the 2007–2008 financial crisis,

which our model cannot control for. Likewise, Fleckenstein et al. (2014) document a significantly

higher mispricing of TIPS in that period. In addition, the financial crisis was arguably both a re-
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assessment of the amount of risk to be absorbed by the market and of preferences to be exposed to

risk. Our measure only captures the second aspect.

Figure 7: Risk aversion coefficient

Notes: This figure shows the estimated risk aversion coefficient (γt in eq. 9). The red-shaded areas highlight NBER
recessions. Sample period: 1961Q2-2019Q4. Confidence bands reflect filtering uncertainty.

Risk aversion is a key driver of bond pricing in our model. Figure 9 shows the close relationship

between risk aversion and real term premiums. The difference in dynamics of real term premiums

across maturities results from the two-factor structure of risk aversion in eq. 10. The faster-moving

component, wt , fades out more quickly and is thus less relevant than the slow-moving component,

mt , for the pricing of longer-term bonds.

The relevance of risk aversion for the dynamics of our model is also visible in impulse response

functions. Figure 10 illustrates that a change in risk aversion (a materialisation of the shock εw,t)

is a key driver of real term and inflation risk premiums (and so of nominal term premiums).13 Our

linear-quadratic specification of the nominal side of the economy makes the dynamics of nominal

bond prices in response to the risk aversion shock dependant on the state of the economy. The

three columns in Figure 10 differ in the starting value of the state driving the inflation-consumption

13The results here hold equally for the slow-moving component, εm,t , in risk aversion—just with higher persistence.
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Figure 8: Risk aversion coefficient - comparison with other risk indices
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Notes: This figure shows the estimated risk aversion coefficient (γt in eq. 9) together with (minus) the risk appetite
index of Bauer et al. (2023) and (minus) the risk perception index of Pflueger et al. (2019). All series are standardised
to make the original units comparable.

correlation, κt , on impact of the shock. While the effect on real rates is indifferent to the state (first

row), the effect on break-even inflation rates (defined as nominal minus real rates) hinges critically

on the initial value of κt (second row). A strongly negative value (here equal to −0.75) implies

a supply-driven environment, as inflation and consumption growth correlate negatively, in which

inflation risk premiums are already positive and get even higher in response to higher risk aversion

(second row, left panel). By contrast, in a demand-driven environment with a strongly positive

κt (here 0.75), inflation risk premiums are negative and get even lower (second row, right panel).

In a balanced supply-demand environment, risk aversion has only little effects on inflation risk

premiums even though they are not entirely zero due to non-linear effects (second row, middle

panel). The effect on nominal rates eventually reflects the joint effect on real and break-even

inflation rates (third row). Overall, risk aversion works as amplifier of inflation risk premiums

in our model: it makes negative inflation risk premiums more negative and positive inflation risk

premiums more positive—an intuitive feature that is not replicable with a purely linear model (see

also Subsection 4.2).
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Figure 9: Real term premiums versus risk aversion
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Notes: This figure compares the 5-year and 10-year real term premium to the filtered risk aversion (γt ). The real term
premiums T Pt,h are defined in (23). Sample period: 1961Q2-2019Q4.
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Figure 10: State-dependant impulse responses of rates to a risk aversion shock
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Notes: This figure shows the dynamic effects of one-unit increases (equal to one standard deviation) in the fast-moving
risk aversion shock, εw, on 10-year real, break-even inflation and nominal rates. Effects are expressed in basis points
(y-axis). The x-axis shows the number of quarters after the shock. The black solid lines correspond to the total
effect of the shock on each rate. Crosses and circles show the two components of these effects: on the expectations
component (crosses) and on the risk-premium component (circles). The three columns differ in the starting value of
the state κt on impact of the shock. All other states are set to their unconditional mean. More precisely, the plots show
the differences between two types of conditional expectations h quarters ahead: considering a given rate of interest xt
(real, nominal, or BEIR), the first conditional expectation is E(xt+h|κt = κ̄,εw,t = 1) and the second is E(xt+h|κt = κ̄)
with κ̄ ∈ [−0.75,0,+0.75] from left to right columns.
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4.4 Inflation-consumption correlation and inflation risk premium dynamics

Our model incorporates a mechanism that allows for a time-varying prominence of supply vs

demand shocks driving consumption growth and inflation. This is implemented via the (latent)

variable κt that is proportional to the conditional covariance of inflation and consumption growth,

see again Equation (7) above. Figure 11 displays the filtered κt series in panel (a) and the one-step-

ahead conditional correlation of consumption growth and inflation in panel (b).14

Figure 11: Conditional correlation between consumption growth and inflation

Notes: This figure displays the estimate of factor κt , which drives the correlation between inflation (πt ) and consump-
tion growth (∆ct ). See Subsection 2.1 for modeling details. The bottom plot shows the model-implied one-step-ahead
conditional correlation between π and ∆ct . The red-shaded areas highlight NBER recessions. Sample period: 1961Q2-
2019Q4. Confidence bands reflect filtering uncertainty (obtained by the delta method for the lower plot).

Over our sample, the evolution of this correlation can be grouped roughly into three phases:

first, a near-zero correlation in the beginning; second, a steep decline towards a negative correlation

in the 1980s; third; starting in the 1990s, a normalisation of the correlation to zero and eventually to
14The correlation between the two panels is very high, yet not perfect as the second panel is the correlation (rather

than the covariance). See the discussion around equation 7.
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temporary positive levels, indicating a dominance of demand shocks driving the economy. The start

of the second phase coincides with the second oil crisis in 1979, in which surging oil prices drove

up inflation and depressed growth in the form of a classical negative cost-push supply shock. The

most negative levels of the inflation-consumption correlation in the second phase can be attributed

to the Volcker disinflation era. Even though this era is typically not considered a supply shock, the

policy of the Federal Reserve under Volcker contributed to a strong and long-lasting decrease of

(structural) inflation without entirely stalling the economy as feared back in the time (Goodfriend

and King, 2005).

Let us stress that the ability of our approach to infer the evolution of κt , and hence of the con-

ditional covariance between consumption and inflation, strongly hinges on observed variation in

real and nominal bond yields, that are supposed to capture the investors’ perception of forward-

looking co-movements in macroeconomic variables. Our filtering procedure is indeed such that κt

estimates are flat when macroeconomic variables alone—consumption growth, output gap and in-

flation measurements—are used as observations. This is because, as is the case for other modified

Kalman filtering approaches proposed in the literature (e.g., de Jong, 2000; Duan and Simonato,

1999; Monfort et al., 2017), our QKF-based approach can detect movements in the latent factors

only if the latter affect the conditional means of observed variables.15 By contrast to macroeco-

nomic variables, the conditional means of yields depend on κt , which makes it possible to infer its

variations by means of our filtering approach. Despite kt being informed only by financial market

information, the level of our model-based consumption-inflation correlation is in a similar ball-

park as that of macro-based GARCH approaches or simple moving-window correlations between

inflation and consumption growth. However, the different correlation measures can show different

dynamics over certain sub-samples.

15To get the intuition behind that result, consider a simple state-space model whose measurement equations are
yt = Bkt +Σ(kt)εt , where yt is the vector of observed variables, and where kt follows an AR(1) process. Assume we
use a modified Kalman filter (as is the case here, see Section 3 and Appendix B) to estimate kt . The Kalman gain then
is a product of matrices, one of them being matrix B. Hence, if B = 0, i.e., if kt affects observed variables only through
second order moments, the gain is 0, and the Kalman estimate of kt converges to its unconditional mean. This relates
to the fact that the (modified) Kalman filter we use is not optimal in this heteroskedastic context. Other nonlinear filters
(e.g. a particle filter) may be used to exploit the additional information contained in the macroeconomic variables’
innovations; this is left for further research.
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The model contains an intimate link between the time-varying relevance of supply vs demand

shocks on the one hand, and inflation risk premiums on the other hand, confirming that infla-

tion risk premiums are positive under the prevalence of supply shocks and negative when demand

shocks dominate the economy. One way to see this nexus operating in our model economy is via

the impulse responses in Figure 12: a positive realisation of the shock εk,t (leading to an increase in

κ and thus a higher inflation-consumption correlation, i.e., letting the economy look more demand-

dominated) leaves the real yield curve unaffected, but decreases inflation risk premiums and hence

nominal term premiums and bond yields. This comparison bears similarity to Breach et al. (2020)

who also focus on the relation between Covt(πt+h,∆ct+h) and inflation risk premiums, likewise

stressing that “in a world where supply shocks dominate, this covariance is strongly negative, in-

vestors fear inflation, and the risk premium for bearing inflation risk is positive”, and the other

way round for demand shocks. They co-plot their estimated inflation risk premium estimates with

correlation measures of expected growth and inflation, using the correlation of stock prices and

(synthetic) TIPS-based break-even inflation rates as proxies. They confirm the inverse relation be-

tween the two. Unlike in their paper, which relies on off-model inflation-consumption correlations,

our model simultaneously generates inflation risk premiums and time-varying macro correlations

within a single framework.

Another, more direct, evidence is given by the co-plot of the time-varying inflation-consumption

correlation (same as in Figure 11) and model-implied inflation risk premiums, see Figure 13. There

is a clear inverse co-movement between the two, in line with economic intuition. At the same time,

inflation risk premiums are not the exact mirror image of the time-varying inflation-consumption

correlation as they are also driven by time variation in risk aversion and by the interaction between

the correlation and risk aversion (see again Subsection 4.2).

The importance of risk aversion for the variation in inflation risk premiums and as amplifier

of the time-varying inflation-consumption-correlation driver is also illustrated in Figure 14. If the

inflation-consumption correlation was the only source of variation in inflation risk premiums, the

points in the scatter plot between the driver of the inflation-consumption correlation, κ , and the
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Figure 12: Impulse responses of rates to a corr(π,c) shock
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Notes: This figure shows the dynamic effects of one-unit increases (equal to one standard deviation) in the shock
driving the inflation-consumption correlation, εk, on 10-year real, break-even inflation and nominal rates. Effects are
expressed in basis points (y-axis). The x-axis shows the number of quarters after the shock. The black solid lines
correspond to the total effect of the shock on each rate. Crosses and circles show the two components of these effects:
on the expectations component (crosses) and on the risk-premium component (circles). On impact of the shock, all
states are set to their unconditional mean. More precisely, considering a given rate of interest xt (real, nominal, or
BEIR), the plots show the conditional expectation E(xt+h|εk,t = 1) for h quarters ahead.

associated inflation risk premiums would all line up on a smooth line invariant to the level of risk

aversion. Note that such line need not be linear due to the linear-quadratic nature of the model.

Yet, the model estimates are scattered between different “isolines” of risk aversion, which are

model-implied mappings between κ and the 10-year inflation risk premium for a fixed level of risk

aversion. One such isoline belongs to a very low level of risk aversion of 1, the other to a high

value of 50. For example, near a level of κ = −0.5, the isolines span a range of 550 basis points

for the corresponding inflation risk premiums and the actually estimated inflation risk premiums

fluctuate within a range of 300 basis points.
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Figure 13: Inflation risk premiums versus the conditional inflation-consumption correlation
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Notes: This figure compares the 5-year and 10-year inflation risk premiums to the conditional correlation between
inflation (πt ) and consumption growth (∆ct ). The inflation risk premium of maturity h is given by T P$

t,h−T Pt,h, where

the nominal and real term premiums T P$
t,h and T Pt,h are defined in (23); the inflation risk premium can be understood

as the risk premium component of the inflation compensation it,h− rt,h (also called break-even inflation rate). Sample
period: 1961Q2-2019Q4.
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Figure 14: Amplification of inflation risk premiums via risk aversion
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Notes: This figure shows the scatter plot between the estimated 10-year inflation risk premiums and the filtered κt
which drives the conditional inflation-consumption correlation. The isolines show the model-implied inflation risk
premium as a function of κ for different values of risk aversion, γ , by setting the states determining κ and γ accord-
ingly and keeping all other states at their unconditional means. As risk aversion can be obtained by any arbitrary
combination of its fast- and slow-moving components, wt and mt in eq. 10, the relative split is based on each compo-
nent’s contribution to the unconditional variance of risk aversion. Blue circles outside the isolines result from either
more extreme values of risk aversion or a different composition of the risk aversion components.
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5 Conclusion

The paper contributes to the macro-finance literature with a new equilibrium term structure model

that features Epstein-Zin utility, time-varying risk aversion, a trend-cycle decomposition of con-

sumption, hysteresis effects, and a time-varying consumption-inflation correlation. The latter

renders the model linear-quadratic, as opposed to completely affine, but we still obtain (linear-

quadratic) closed-form solutions for nominal bond yields, real yields, inflation compensation and

associated premiums. The model is estimated on US data, including macro variables (inflation and

consumption), nominal and real bond yields, and survey expectations on future macro and financial

variables.

The model reproduces several empirical patterns that are central to macro-finance analysis.

For instance, it sheds light at the often alleged nexus between inflation risk premiums and the

prominence of supply vs demand shocks: “At times when inflation is countercyclical as will be

the case if the economy is affected by supply shocks [...] nominal bond returns are procyclical

and investors demand a positive risk premium to hold them”, Campbell et al. (2017), and vice

versa for demand shocks. Via the assumed time-varying consumption-inflation correlation, the

model implies that supply-driven episodes coincide with positive inflation risk and nominal term

premiums, while demand-driven episodes coincides with negative/lower premiums. Time-varying

risk aversion is identified as an additional factor that impacts these premiums.

As another appealing property, our specification of consumption dynamics—a trend-cycle de-

composition with hysteresis effects—allows the model to generate a real curve that is upward-

sloping on average, i.e. it generates positive unconditional expectations of real term premiums.

This is a feature in the data that several structural macro-finance yield curve models struggle to

generate.

The model lends itself to being used as a laboratory, e.g. in central bank analysis, for study-

ing the interplay of consumption and inflation dynamics with bond and inflation risk premiums.

However, linking bond and inflation risk premiums to specific preferences and associated macro

dynamics in an equilibrium model like ours comes with a trade-off. On the one hand, using our
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model links estimation directly with an economic narrative: it provides a coherent framework for

both estimating risk premiums and linking their dynamics to risk aversion and macro drivers. On

the other hand, the structural restrictions that come with such an equilibrium approach and the re-

stricted number of factors allow for less flexibility in fitting nominal and real yield curves compared

to, say, flexible (arbitrage-free) approaches working purely latent factors.

In future work, it may be worthwhile to assess some of our model properties in more depth and

refine them. For instance, it is intriguing that the dynamics of our estimated risk aversion parameter

are close to that of other approaches in the literature, despite the fact that our approach does not uti-

lize stock market information while most others do. The reason for this pattern could be explored

more carefully. As another example, and as mentioned in the text, we may use a simulation-based

or particle filter in order to broaden the inference on the time-varying consumption-inflation cor-

relation to cover macro data. This extensions would, however, substantially complicate the model

estimation. As regards the yield curve implications, our linear-quadratic model does not preclude

interest rates to turn negative. Adding a ZLB constraint is less straightforward to implement in the

context of equilibrium term structure model than in reduced-form yield-curve models like, e.g.,

Wu and Xia (2016); the modifications of preferences or macro-dynamics would lead to dropping

the specific new features highlighted in this paper and/or leaving the convenient linear-quadratic

framework. Finally, it would be interesting to apply the model to the euro area that, despite its

relatively short history, has arguably also displayed the change in sign of inflation risk premiums

and the associated time variation in supply vs demand shocks driving the economy. We leave these

extensions for future research.
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A Parameterization of the Gaussian linear-quadratic model
The matrices defining the Gaussian linear-quadratic model outlined in Subsection 2.3 are:

Φ =


ρg ρgz 0 0 0 0
0 ρz 0 0 0 0
0 1 0 0 0 0
0 0 0 ρw 0 0
0 0 0 0 ρm 0
0 0 0 0 0 ρk

 , Σ =



σg 0 0 0 0 0 0
0 1√

2
σz

1√
2
σz 0 0 0 0

0 0 0 0 0 0 0
0 0 0 σw 0 0 0
0 0 0 0 σm 0 0
0 0 0 0 0 σk 0

 ,

ΦZ =

[
ρ∗π 0
0 ρπ̃

]
,

and

vec(ΣZ(Xt)) =



0
0
0

1+µκ

2 σπ,z
0

−1−µκ

2 σπ,z
0
0
0
0
0
0

σ∗π
0


︸ ︷︷ ︸

=Γ0

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

2σπ,z
0 0 0 0 0 0
0 0 0 0 0 1

2σπ,z
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

=Γ1

Xt .

B State-space representation
Let us denote by Ut the vector of observations on date t (with some components that may be missing
values). This vector can gather: macroeconomic variables, nominal and real yields, survey-based
data. According to the model, such variables are affine functions of Yt . That is, the measurement
equations admit the following representation:

Ut = AU +BUYt +ηt ,

where ηt ∼ i.i.d. N (0,Ωη) is a vector of Gaussian measurement errors.
The transition equation is given by the vector auto-regressive representation of Yt (see Subsec-

tion 2.3). The existence of this representation stems from the affine property of the extended state
vector, see (II.3) in Supplemental Appendix II.
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The model can be estimated by means of the Kalman filter techniques, maximizing an approx-
imation to the likelihood function. The Kalman filter is not optimal because Vart(Yt+1) is not con-
stant in our context, and because Yt’s innovations are not Gaussian. As shown in Corollary 1, this
conditional variance depends linearly on Yt . This is easily accommodated in a modified Kalman
filter, as, e.g., in de Jong (2000), Duan and Simonato (1999), or Monfort et al. (2017). Contrary
to the case where square-root processes are involved, we do not have to deal with the sign of the
latent factors (the components of Xt and Zt), as all these factors are real-valued. However, on each
iteration of the Kalman filter, we need to deal with the fact that some components of Yt are de-
terministic functions of the other ones: indeed, the last nX(nX + 1)/2 entries of Yt correspond to
vech(XtX ′t ), where Xt correspond to the first nX entries of Yt . In practice, following Monfort et al.
(2015), at the end of the updating step, we replace the last nX(nX + 1)/2 entries of the updated
vector (Yt|t) with vech(Xt|tX ′t|t), where vector Xt|t gathers the first nX components of Yt|t .

C General econometric setting

C.1 The real side of the economy

Assumption A.1. The preferences of the representative agent are of the Epstein and Zin
(1989) type, with a unit elasticity of intertemporal substitution (EIS). Specifically, the time-t
log utility of a consumption stream (Ct) is recursively defined by

ut = logUt = (1−δ )ct +
δ

1− γt
log(Et exp [(1− γt)ut+1]) , (24)

where ct denotes the logarithm of the agent’s consumption level Ct , δ the pure time discount
factor and γt is the risk aversion parameter.

Assumption A.2. The log growth rate of consumption (∆ct) as well as the coefficient of risk
aversion (γt) are affine in an nX -dimensional vector of state variables Xt:

∆ct = µc,0 +µ
′
c,1Xt (25)

γt = µγ,0 +µ
′
γ,1Xt . (26)

Xt follows a Gaussian VAR(1) process, that is:

Xt = ΦXt−1 +Σεt , (27)

where εt ∼ i.i.d.N (0, Inε
). (Matrix Σ is of dimension nX ×nε .) This implies that

Et(exp(w′Xt+1)) = exp
(
ψ0(w)+ψ1(w)′Xt

)
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with:
ψ0(w) =

1
2

w′ΣΣ
′w and ψ1(w) = Φ

′w.

The following proposition exhibits the s.d.f. that prevails under the previous assumptions.

Proposition 1. Under Assumptions A.1 and A.2, the s.d.f. is given by

Mt,t+1 = exp
[
−(η0 +η1

′Xt)+λ
′
t Xt+1−λ

′
t ΦXt−

1
2

λ
′
t ΣΣ

′
λt

]
,

where {
η0 = − log(δ )+µc,0 +

1
2 µ ′c,1ΣΣ′µc,1 +λ ′0ΣΣ′µc,1

η1 = (λ1ΣΣ′+Φ′)µc,1,
(28)

and λt = λ0 +λ ′1Xt , with:{
λ0 =

[
(1−µγ,0)δ (InX −δΦ′)−1Φ′−µγ,0InX

]
µc,1

λ1 = −(µγ,1µ ′c,1)(δΦ(InX −δΦ)−1 + InX ).
(29)

The short-term real rate rt is affine in Xt:

rt =− log[Et(Mt,t+1)] = η0 +η
′
1Xt . (30)

Proof. See Appendix I.1.

C.2 Inflation and extended state vector

Assumption A.3. The (log) inflation rate is given by:

πt = µπ,0 +µ
′
π,ZZt +µ

′
π,X Xt +µ

′
π,XX vech(XtX ′t ), (31)

where [
Xt
Zt

]
=

[
Φ 0
0 ΦZ

][
Xt−1
Zt−1

]
+

[
Σ

ΣZ(Xt−1)

]
εt , (32)

with εt ∼ i.i.d.N (0, Inε
) (consistently with eq. 27), and with

vec(ΣZ(Xt)) = Γ0 +Γ1Xt . (33)

Since ΣZ(Xt) is of dimension nZ×nε , Γ0 and Γ1 are of dimension (nZnε)×1 and (nZnε)×
nX , respectively.

Proposition 2. Under Assumptions A.2 and A.3, process Yt (with Yt = [X ′t ,Z
′
t ,vech(XtX ′t )

′]′)
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is affine. More precisely, we have:

Et(exp(u′Yt+1)) = exp
(
ψY,0(u)+ψY,1(u)′Yt

)
(34)

= exp
[
ψY,0(u)+ψY,X(u)′Xt +ψY,Z(u)′Zt +ψY,XX(u)′vech(XtX ′t )

]
,

where u = [u′X ,u
′
Z,u
′
XX ]
′, and where functions ψY,0, ψY,X , ψY,Z , and ψY,XX are defined by:

ψY,0(u) = −1
2

log |Inε
−2V (u)|+ 1

2
v0(u)′(Inε

−2V (u))−1v0(u)

ψY,X(u) = Φ
′uX + v1(u)′(Inε

−2V (u)′)−1v0(u)
ψY,Z(u) = Φ

′
ZuZ

ψY,XX(u) = KnX

[
(Φ′⊗Φ

′)(MnX uXX)+
1
2

vec
(
v1(u)′(Inε

−2V (u)′)−1v1(u)
)]

,

with

v0(u) = Σ
′uX +(Inε

⊗u′Z)Γ0

v1(u) = (Inε
⊗u′Z)Γ1 +2Σ

′vec−1(MnX uXX)Φ

V (u) = vec−1{u′XX M′nX
(Σ⊗Σ)},

where

• MnX is the matrix of dimension n2
X × (n(n+ 1)/2) that is such that, for any symmet-

ric matrix Ω, and any vector u of dimension nX(nX + 1)/2, we have u′vech(Ω) =
u′M′nX

vec(Ω);

• KnX is the matrix of dimension n(n+ 1)/2× n2
X that is such that, for any symmetric

matrix Ω of dimension nX ×nX , we have vec(Ω) = K′nX
vech(Ω).

(Note: The three components of u have dimensions that match those of Xt , Zt , and
vech(XtX ′t ), respectively.)

Proof. Supplemental Appendix I.3.

C.3 Risk-neutral dynamics
The risk-neutral measure is defined with respect from the physical measure, by means of the
Radon-Nikodym derivative Mt,t+1/Et(Mt,t+1).

Proposition 3. Under Assumptions A.1 and A.2, the risk-neutral dynamics of Xt is:

Xt = µ
Q+Φ

QXt−1 +Σε
Q
t ,
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where ε
Q
t ∼ i.i.d.N (0, Inε

) under Q, and where:

µ
Q = ΣΣ

′
λ0 and Φ

Q = Φ+ΣΣ
′
λ
′
1,

λ0 and λ1 being given in (29).

Proof. See Appendix I.2.

Proposition 4. Under Assumptions A.1, A.2, and A.3, the risk-neutral dynamics of Zt are of
the form:

Zt = µ
Q
Z +ΦZZt−1 +Φ

Q
ZX Xt−1 +Φ

Q
ZXX vec(Xt−1X ′t−1)+ΣZ(Xt−1)ε

Q
t , (35)

where ε
Q
t ∼ i.i.d.N (0, Inε

) under Q, and with

µ
Q
Z = ([Σ−1

µ
Q]′⊗ InZ)Γ0

Φ
Q
ZX = ([Σ−1

µ
Q]′⊗ InZ)Γ1 +

 Γ′0J′1Σ−1(ΦQ−Φ)
...

Γ′0J′nZ
Σ−1(ΦQ−Φ)


Φ

Q
ZXX =

 vec(Γ′1J′1Σ−1(ΦQ−Φ))′

...
vec(Γ′1J′nZ

Σ−1(ΦQ−Φ))′

 ,
where µQ and ΦQ are given in Prop. 3, and where, for i∈ {1, . . . ,nZ}, Ji = Inε

⊗e′i,nZ
, where

ei,nZ is the ith column of the identity matrix of dimension nZ×nZ .
If Σ is not invertible, then one can replace Σ−1 with the Moore-Penrose inverse of Σ.

Proof. Supplemental Appendix I.4.

Proposition 5. Under Assumptions A.1, A.2, and A.3, process Yt is affine under the risk-
neutral measure. More precisely, we have:

EQ
t (exp(u′Yt+1))

= exp
[
ψ

Q
Y,0(u)+ψ

Q
Y,X(u)

′Xt +ψ
Q
Y,Z(u)

′Zt +ψ
Q
Y,XX(u)

′vech(XtX ′t )
]
. (36)

where u = [u′X ,u
′
Z,u
′
XX ]
′ (the three components of u having dimensions that match those of
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Xt , Zt , and vech(XtX ′t ), respectively), with:

ψ
Q
Y,0(u) = u′X µ

Q+u′XX vec(µQ
µ
Q′)+u′Zµ

Q
Z

−1
2

log |Inε
−2V (u)|+ 1

2
v∗0(u)

′(Inε
−2V (u))−1v∗0(u)

ψ
Q
Y,X(u) = Φ

Q′uX +2(ΦQ′⊗µ
Q′)(MnX uXX)+Φ

Q
ZX
′
uZ + v∗1(u)

′(Inε
−2V (u)′)−1v∗0(u)

ψ
Q
Y,Z(u) = Φ

′
ZuZ

ψ
Q
Y,XX(u) = KnX

[
Φ

Q
ZXX

′
uZ +(ΦQ′⊗Φ

Q′)(MnX uXX)+
1
2

vec
(
v∗1(u)

′(Inε
−2V (u)′)−1v∗1(u)

)]
,

with

v∗0(u) = Σ
′uX +2(Σ′⊗µ

Q′)(MnX uXX)+(Inε
⊗u′Z)Γ0

v∗1(u) = (Inε
⊗u′Z)Γ1 +2Σ

′vec−1(MnX uXX)Φ
Q

V (u) = vec−1{u′XX M′nX
(Σ⊗Σ)}.

Proof. Supplemental Appendix I.5

D Pricing

Proposition 6. Under Assumptions A.1 and A.2, the date-t price of a real zero-coupon bond
of maturity h is given by:

Pt,h = exp
(
ah +bh

′Xt
)
, (37)

with a0 = 0 and b0 = 0 and, for h > 0:

ah = −η0 +ah−1 +b′h−1µ
Q+

1
2

b′h−1ΣΣ
′bh−1

bh = −η1 +Φ
Q′bh−1.

Denoting by rt,h the maturity-h zero-coupon real yield, we have:

rt,h =−
1
h

log(Pt,h) =−
1
h
(ah +b′hXt). (38)

Proof. Make the conjecture that, for all date t and maturity h, there exist a scalar ah and a vector
bh that are such that Pt,h is of the form Pt,h = exp(ah +b′hXt). Let’s then compute ah+1 and bh+1:

Pt,h+1 = EQ
t (exp(−η0−η

′
1Xt +ah +b′hXt+1))

= exp
(
−η0−η1

′Xt +ah +b′hµ
Q+

1
2

b′hΣΣ
′bh +b′hΦ

QXt

)
, (39)

which gives the result.
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Proposition 7. Under Assumptions A.1, A.2, and A.3, the date-t price of a nominal zero-
coupon bond of maturity h is given by:

P$
t,h = exp

(
a$

h +b$
h
′
Xt + c$

h
′
Zt +d$

h
′
vech(XtX ′t )

)
, (40)

with

a$
h = −η0−µπ,0 +a$

h−1 +ψ
Q
Y,0(uh−1)

b$
h = −η1 +ψ

Q
Y,X(uh−1)

c$
h = ψ

Q
Y,Z(uh−1)

d$
h = ψ

Q
Y,XX(uh−1),

where, for h≥ 1:

uh−1 =
[
(b$

h−1−µπ,X)
′,(c$

h−1−µπ,Z)
′,(d$

h−1−µπ,XX)
′
]′
, (41)

and a$
0 = 0, b$

0 = 0, c$
0 = 0, and d$

0 = 0, and where functions Ψ
Q
Y,• are those given in Prop. 5.

Proof. See Appendix I.6.
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– Supplemental Appendix –

I Proofs

I.1 Proof of Proposition 1
When agent’s preferences are as in eq. (24), the s.d.f. is given by (e.g., Piazzesi and Schneider,
2007):

Mt,t+1 = δ

(
Ct+1

Ct

)−1 exp[(1− γt)ut+1]

Et(exp[(1− γt)ut+1])
. (I.1)

Let us show that, under Assumptions A.1 and A.2, the utility is exponential affine.

Proposition 8. Under Assumptions A.1 and A.2, the utility Ut = Ct exp(µu,0,t−1 + µ ′u,1Xt),
or

ut = ct +µu,0,t−1 +µ
′
u,1Xt (I.2)

satisfies eq. (24) for any Xt iff µu,1 and µu,0,t are given by

µu,1 = δ (InX −δΦ
′)−1

Φ
′
µc,1, (I.3)

and

µu,0,t =−µc,0 +
1
δ

{
µu,0,t−1−

δ

1− γt
ψ0
[
(1− γt)(δ (InX −δΦ

′)−1
Φ
′+ InX )µc,1

]}
. (I.4)

Proof. If ut is given by (I.2), we have:

ut+1 = ct +∆ct+1 +µu,0,t +µ
′
u,1Xt+1 = ct +µu,0,t +µc,0 +(µu,1 +µc,1)

′Xt+1.

Then, for a given state vector Xt , we have:

eq. (24) ⇔ ct +µu,0,t−1 +µ
′
u,1Xt

= (1−δ )ct +δ µu,0,t +δ µc,0 +δct +

δ

1− γt

{
ψ0
[
(1− γt)(µu,1 +µc,1)

]
+ψ1

[
(1− γt)(µu,1 +µc,1)

]′Xt

}

ECB Working Paper Series No 3012 56



⇔ µu,0,t−1−δ µu,0,t +µ
′
u,1Xt

= δ µc,0 +
δ

1− γt

{
ψ0
[
(1− γt)(µu,1 +µc,1)

]
+ψ1

[
(1− γt)(µu,1 +µc,1)

]′Xt

}
.

Therefore eq. (24) is satisfied for any Xt iff the following two conditions are satisfied:{
µu,0,t−1−δ µu,0,t = δ µc,0 +

δ

1−γt
ψ0
[
(1− γt)(µu,1 +µc,1)

]
µu,1 =

δ

1−γt
ψ1
[
(1− γt)(µu,1 +µc,1)

]
,

which leads to the result, using that ψ1
[
(1− γt)(µu,1 +µc,1)

]
= (1− γt)Φ

′(µu,1 +µc,1) under As-
sumption A.2.

Using the exponential affine formulation of the utility in (I.1) leads to:

logMt,t+1 = logδ −∆ct+1 +(1− γt)ut+1− logEt(exp[(1− γt)ut+1])

= log(δ )−µc,0−µ
′
c,1Xt+1 +(1− γt)(µc,1 +µu,1)

′Xt+1

− logEt(exp
{
(1− γt)

[
(µc,1 +µu,1)

′Xt+1
]}
)

= log(δ )−µc,0 +
[
(1− γt)µu,1− γt µc,1

]′Xt+1

− logEt(exp
{
(1− γt)

[
(µc,1 +µu,1)

′Xt+1
]}
)

= log(δ )−µc,0−ψ0 [(1− γt)(µc,1 +µu,1)]+[
(1− γt)µu,1− γt µc,1

]′Xt+1−ψ1 [(1− γt)(µc,1 +µu,1)]
′Xt .

Hence, the stochastic discount factor between dates t and t +1 is given by:

Mt,t+1 = exp[−(η∗0,t +η
∗
1
′Xt)+λ

′
t Xt+1−ψ(λt ,Xt)], (I.5)

with 
λt =

{
(1− γt)δ (InX −δΦ′)−1Φ′− γtInX

}
µc,1

η∗0,t = − log(δ )+µc,0 +ψ0 [λt +µc,1]−ψ0(λt)

η∗1 = Φ′µc,1.

(I.6)

Using γt = µγ,0 +µ ′
γ,0Xt (Assumption A.2), we obtain:

λt =
[
(1− γt)δ (InX −δΦ

′)−1
Φ
′− γtInX

]
µc,1

=
[
δ (InX −δΦ

′)−1
Φ
′− γt(δ (InX −δΦ

′)−1
Φ
′+ InX )

]
µc,1

=
[
δ (InX −δΦ

′)−1
Φ
′−µγ,0(δ (InX −δΦ

′)−1
Φ
′+ InX )

]
µc,1︸ ︷︷ ︸

=λ0

+

[
− (δ (InX −δΦ

′)−1
Φ
′+ InX )µc,1µ

′
γ,1
]︸ ︷︷ ︸

=λ ′1

Xt . (I.7)

Now, let’s compute η∗0,t . We have (using eq. I.6):

η
∗
0,t = − log(δ )+µc,0 +ψ0(λt +µc,1)−ψ0(λt)
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= − log(δ )+µc,0 +
1
2

µ
′
c,1ΣΣ

′
µc,1 +µ

′
c,1ΣΣ

′
λt ,

which proves Proposition 1.

I.2 Proof of Proposition 3

The conditional risk-neutral Laplace transform EQ
t (exp(u′Xt+1)) is equal to:

Et

(
exp
[
u′Xt+1

] Mt,t+1

Et(Mt,t+1)

)
= Et

(
exp
[

u′Xt+1 +λ
′
t Σεt+1−

1
2

λ
′
t ΣΣ

′
λt

])
= Et

(
exp
[

u′ΦXt +(u+λt)
′
Σεt+1−

1
2

λ
′
t ΣΣ

′
λt

])
= exp

[
u′ΦXt +

1
2
(u+λt)

′
ΣΣ
′(u+λt)−

1
2

λ
′
t ΣΣ

′
λt

]
= exp

[
u′ΦXt +

1
2

u′ΣΣ
′u+u′ΣΣ

′
λt

]
= exp

[
u′ΦXt +

1
2

u′ΣΣ
′u+u′ΣΣ

′(λ0 +λ
′
1Xt)

]
= exp

[
u′(Φ+ΣΣ

′
λ
′
1)Xt +

1
2

u′ΣΣ
′u+u′ΣΣ

′
λ0

]
,

which gives the result.

I.3 Proof of Proposition 2
Let us compute the Laplace transform of Yt = [X ′t ,Z

′
t ,vec(XtX ′t )

′]′. We have:

Et(exp(u′Yt+1))

= Et(exp(u′X Xt+1 +u′ZZt+1 +u′XX vec(Xt+1X ′t+1)))

= Et(exp(u′X(ΦXt +Σεt+1)+u′Z(ΦZZt +ΣZ(Xt)εt+1)+u′XX vec((ΦXt +Σεt+1)(ΦXt +Σεt+1)
′)))

= exp(u′X ΦXt +u′ZΦZZt +u′XX vec(ΦXtX ′t Φ
′))×

Et
(
exp
[
(u′X Σ+u′ZΣZ(Xt)+2u′XX(Σ⊗ [ΦXt ]))εt+1 +u′XX vec(Σεt+1ε

′
t+1Σ

′)
])
, (I.8)

where we have used, in particular, that vec(ΦXtε
′
t+1Σ′) = (Σ⊗ [ΦXt ])εt+1 (exploiting the properties

of the vec operator, see, e.g., Proposition A.1 of Monfort et al., 2015) and also u′XX vec(ΦXtε
′
t+1Σ′)=

u′XX vec(Σεt+1X ′t Φ′) (using the following lemma, since vec−1(uXX) is assumed to be a symmetric
matrix).

Lemma 1. If matrix V is symmetric, then, for any matrix A of the same dimension, we have
vec(V )′vec(A) = vec(V )′vec(A′).

Proof. For any matrix A, we have vec(A′) = Λnvec(A), where n is the dimension of V , and where
Λn is the commutation matrix of dimension n2× n2 (see Lemma A.1 in Monfort et al., 2015). In
particular, since matrix V is symmetric, it comes that vec(V ) = Λnvec(V ), or vec(V )′ = vec(V )′Λ′n.
Using that Λn is orthogonal (and therefore that Λ′nΛn = In) leads to the result.
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Proofs

Moreover, we have:

u′XX vec(Σεt+1ε
′
t+1Σ

′) = u′XX(Σ⊗Σ)vec(εt+1ε
′
t+1) = u′XX(Σ⊗Σ)(εt+1⊗ εt+1)

= (ε ′t+1⊗ ε
′
t+1){u′XX(Σ⊗Σ)}′

= ε
′
t+1vec−1{u′XX(Σ⊗Σ)}εt+1. (I.9)

Hence, the conditional expectation appearing at the end of (I.8) is of the form

Et(exp[v(u,Xt)
′
εt+1 + ε

′
t+1V (u)εt+1]), (I.10)

with {
v(u,Xt)

′ = u′X Σ+u′ZΣZ(Xt)+2u′XX(Σ⊗ [ΦXt ])
V (u) = vec−1{u′XX(Σ⊗Σ)} (I.11)

Let us show that v(u,Xt) is affine in Xt . We have:

v(u,Xt) = vec(v(u,Xt)
′) = vec(u′X Σ+u′ZΣZ(Xt)+2u′XX(Σ⊗ [ΦXt ]))

= Σ
′uX +(Inε

⊗u′Z)(Γ0 +Γ1Xt)+2(Σ⊗ [ΦXt ])
′uXX

= Σ
′uX +(Inε

⊗u′Z)(Γ0 +Γ1Xt)+2([ΦXt ]
′⊗Σ

′)uXX

= Σ
′uX +(Inε

⊗u′Z)(Γ0 +Γ1Xt)+2vec(Σ′vec−1(uXX)ΦXt)

= Σ
′uX +(Inε

⊗u′Z)Γ0 +
[
(Inε
⊗u′Z)Γ1 +2Σ

′vec−1(uXX)Φ
]
Xt

=: v0(u)+ v1(u)Xt . (I.12)

Lemma 2. If ε ∼N (0, Inε
), and if v and V are, respectively, a nε -dimensional vector, and

a nε ×nε dimensional matrix, then

E(exp[v′ε + ε
′V ε]) =

1

|Inε
−2V |1/2 exp

(
1
2

v′(Inε
−2V )−1v

)
.

Proof. See, e.g., Lemma A.2 in Dubecq et al. (2016).

Using the previous lemma in (I.10), it comes that:

Et(exp[v(u,Xt)
′
εt+1 + ε

′
t+1V (u)εt+1])

=
1

|Inε
−2V |1/2 exp

(
1
2
(v0 + v1Xt)

′(Inε
−2V )−1(v0 + v1Xt)

)
=

1

|Inε
−2V |1/2 exp

(
1
2
(v′0(Inε

−2V )−1v0 +X ′t v′1(Inε
−2V )−1v1Xt +2v′0(Inε

−2V )−1v1Xt)

)
,

where, for notational simplicity, we have dropped the dependency in u of v0, v1, and V .
Substituting in the previous expression in (I.8), we obtain:

Et(exp(u′Yt+1))

= exp(u′X ΦXt +u′ZΦZZt +X ′t vec−1{u′XX(Φ⊗Φ)}Xt×
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Proofs

exp
[
−1

2
log |Inε

−2V |+ 1
2

v′0(Inε
−2V )−1v0 +

1
2

X ′t v′1(Inε
−2V )−1v1Xt + v′0(Inε

−2V )−1v1Xt

]
,

which proves Prop. 2.

I.4 Proof of Proposition 4
According to Proposition 1, the s.d.f. is a function of Xt+1 and Xt . In this context, Lemma 1 of
Monfort and Renne (2013) implies that the risk-neutral p.d.f. of Zt+1 and wt+1, given (Xt+1,Yt),
are the same as the historical ones.

We have:

Zt = ΦZZt−1 +ΣZ(Xt−1)εt

= ΦZZt−1 +ΣZ(Xt−1)Σ
−1(Xt−ΦXt−1)

= ΣZ(Xt−1)Σ
−1

µ
Q+ΦZZt−1 +ΣZ(Xt−1)Σ

−1(ΦQ−Φ)Xt−1 +ΣZ(Xt−1)ε
Q
t . (I.13)

Note that the previous formula is also valid if the dimension of Xt is lower than that of εt . In
this case, however, one has to replace Σ−1 with the Moore-Penrose inverse of Σ.

We have:

ΣZ(Xt−1)Σ
−1

µ
Q = vec(ΣZ(Xt−1)Σ

−1
µ
Q)

= ([Σ−1
µ
Q]′⊗ InZ)vec(ΣZ(Xt−1))

= ([Σ−1
µ
Q]′⊗ InZ)(Γ0 +Γ1Xt−1). (I.14)

Moreover, we have:

ΣZ(Xt−1)Σ
−1(ΦQ−Φ)Xt−1 = vec(ΣZ(Xt−1)Σ

−1(ΦQ−Φ)Xt−1)

= ([X ′t−1(Σ
−1(ΦQ−Φ))′]⊗ InZ)(Γ0 +Γ1Xt−1) (I.15)

Let us denote by Ji the nε × (nεnZ) matrix that selects the following nε entries of a vector Γ of
dimension (nεnZ)× 1: {i,nZ + i, . . . ,(nε − 1)nZ + i}. That is Ji = Inε

⊗ e′i,nZ
, where ei,nZ is the ith

column of the identity matrix of dimension nZ×nZ .
For any matrix M of dimension nX ×nε , we have:

((X ′t−1M)⊗ InZ)Γ0 =

 (X ′t−1M)J1Γ0
...

(X ′t−1M)JnZ Γ0

=

 (Γ′0J′1M′)Xt−1
...

(Γ′0J′nZ
M′)Xt−1

=

 Γ′0J′1M′
...

Γ′0J′nZ
M′

Xt−1 (I.16)

Moreover:

((X ′t−1M)⊗ InZ)Γ1Xt−1 =

 X ′t−1Γ′1J′1M′Xt−1
...

X ′t−1Γ′1J′nZ
M′Xt−1

=

 vec(Γ′1J′1M′)′vec(Xt−1X ′t−1)
...

vec(Γ′1J′nZ
M′)′vec(Xt−1X ′t−1)
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=

 vec(Γ′1J′1M′)′
...

vec(Γ′1J′nZ
M′)′

vec(Xt−1X ′t−1). (I.17)

Using (I.16) and (I.17) in (I.15), we obtain:

ΣZ(Xt−1)Σ
−1(ΦQ−Φ)Xt−1

=

 Γ′0J′1Σ−1(ΦQ−Φ)
...

Γ′0J′nZ
Σ−1(ΦQ−Φ)


︸ ︷︷ ︸

=:Γ̃0

Xt−1 +

 vec(Γ′1J′1Σ−1(ΦQ−Φ))′

...
vec(Γ′1J′nZ

Σ−1(ΦQ−Φ))′


︸ ︷︷ ︸

=:Γ̃1

vec(Xt−1X ′t−1) (I.18)

Using (I.14) and (I.18) in (I.13) leads to (35) and proves Prop. 4.

I.5 Proof of Proposition 5
We have:

EQ
t (exp(u′Yt+1))

= EQ
t (exp(u′X Xt+1 +u′ZZt+1 +u′XX vec[Xt+1X ′t+1]))

= EQ
t (exp(u′X(µ

Q+Φ
QXt +Σε

Q
t+1)+

u′Z{µ
Q
Z +ΦZZt +Φ

Q
ZX Xt +Φ

Q
ZXX vec(XtX ′t )+ΣZ(Xt)ε

Q
t+1}+u′XX vec[Xt+1X ′t+1]))

= exp(u′X µ
Q+u′X Φ

QXt +u′Zµ
Q
Z +u′ZΦZZt +u′ZΦ

Q
ZX Xt +u′ZΦ

Q
ZXX vec(XtX ′t ))×

EQ
t (exp(u′X Σε

Q
t+1 +u′ZΣZ(Xt)ε

Q
t+1 +u′XX vec[Xt+1X ′t+1])). (I.19)

Let us focus on the last term:

vec[Xt+1X ′t+1] = vec[(µQ+Φ
QXt +Σε

Q
t+1)(µ

Q+Φ
QXt +Σε

Q
t+1)

′]

= vec
(

µ
Q

µ
Q′+µ

QX ′t Φ
Q′+Φ

QXt µ
Q′+µ

Q
ε
Q
t+1
′
Σ
′+Σε

Q
t+1µ

Q′

+Φ
QXtX ′t Φ

Q′+Φ
QXtε

Q
t+1
′
Σ
′+Σε

Q
t+1X ′t Φ

Q′+Σε
Q
t+1ε

Q
t+1
′
Σ
′
)

= vec(µQ
µ
Q′)+(In2

X
+ΛnX )(Φ

Q⊗µ
Q)Xt +(ΦQ⊗Φ

Q)vec(XtX ′t )

+(In2
X
+ΛnX )(Σ⊗ [µQ+Φ

QXt ])ε
Q
t+1 +(Σ⊗Σ)vec(εQt+1ε

Q
t+1
′
),

where ΛnX is the commutation matrix of dimension n2
X × n2

X (see the proof of Lemma 1). Since
vec−1(uXX) is a nX × nX symmetric matrix (by assumption), it comes that uXX = ΛnX uXX . As a
result:

u′XX vec[Xt+1X ′t+1] = u′XX vec(µQ
µ
Q′)+2u′XX(Φ

Q⊗µ
Q)Xt +u′XX(Φ

Q⊗Φ
Q)vec(XtX ′t )

+2u′XX(Σ⊗ [µQ+Φ
QXt ])ε

Q
t+1 +u′XX(Σ⊗Σ)vec(εQt+1ε

Q
t+1
′
).
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Using the previous expression in (I.19), we obtain:

EQ
t (exp(u′Yt+1)) =

exp{u′X µ
Q+u′XX vec(µQ

µ
Q′)+u′Zµ

Q
Z

+(u′X Φ
Q+2u′XX(Φ

Q⊗µ
Q)+u′ZΦ

Q
ZX)Xt +u′ZΦZZt

+(u′ZΦ
Q
ZXX +u′XX(Φ

Q⊗Φ
Q))vec(XtX ′t )}×

EQ
t

(
exp
([

u′X Σ+2u′XX(Σ⊗µ
Q)+2u′XX(Σ⊗ [ΦQXt ])+u′ZΣZ(Xt)

]
ε
Q
t+1 +u′XX(Σ⊗Σ)vec(εQt+1ε

Q
t+1
′
)
))

.

The last conditional expectation is similar to that appearing in (I.8); that is, it is of the form:

EQ
t

(
v∗(u,Xt)

′
ε
Q
t+1 + ε

Q
t+1
′
V (u)εQt+1

)
, (I.20)

with
v∗(u,Xt)

′ = u′X Σ+2u′XX(Σ⊗µ
Q)+2u′XX(Σ⊗ [ΦQXt ])+u′ZΣZ(Xt),

and V (u) is as in (I.11).
We can proceed as in (I.12) to show that v∗(u,Xt) is affine in Xt . This leads to

v∗(u,Xt) = v∗0(u)+ v∗1(u)Xt ,

with {
v∗0(u) = Σ′uX +2(Σ′⊗µQ′)uXX +(Inε

⊗u′Z)Γ0
v∗1(u) = (Inε

⊗u′Z)Γ1 +2Σ′vec−1(uXX)Φ
Q.

(I.21)

We can apply Lemma 2 to evaluate (I.20). This leads to the result presented in Prop. 5.

I.6 Proof of Prop. 7
The price of a h-period nominal bond is given by

P$
t,h = Et(Mt,t+h exp(−πt+1−·· ·−πt+h))

= Et

(
Mt,t+h

Et(Mt,t+h)
Et(Mt,t+h)exp(−πt+1−·· ·−πt+h)

)
= EQ

t
(
Et(Mt,t+h)exp(−πt+1−·· ·−πt+h)

)
= EQ

t (exp(−rt−·· ·− rt+h−1−πt+1−·· ·−πt+h)) .

We have:

P$
t,h+1 = EQ

t

(
exp(−rt−πt+1)P$

t+1,h

)
= EQ

t
(
exp
[
−(η∗0 +η

∗
1
′Xt)−µπ,0−µ

′
π,ZZt+1−µ

′
π,X Xt+1−µ

′
π,XX vec(Xt+1X ′t+1)

+a$
h +b$

h
′
Xt+1 + c$

h
′
Zt+1 +d$

h
′
vec(Xt+1X ′t+1)

])
= exp(−η

∗
0 −η

∗
1
′Xt−µπ,0 +a$

h)×
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EQ
t

(
exp
[
(b$

h−µπ,X)
′Xt+1 +

(
c$

h−µπ,Z

)′
Zt+1 +(d$

h−µπ,XX)
′vec(Xt+1X ′t+1)

])
= exp(−η

∗
0 −η

∗
1
′Xt−µπ,0 +a$

h)×

exp
[
ψ

Q
Y,0(uh)+ψ

Q
Y,X(uh)

′Xt +ψ
Q
Y,Z(uh)

′Zt +ψ
Q
Y,XX(uh)

′vec(XtX ′t )
]
,

where uh is as defined in (41). This gives the result.

II First- and second-order moments of Yt

In this section, we derive the first-order and second-order moments of Yt . We consider conditional
moments, say Et(Yt+1), and unconditional moments, as E(Yt).

Proposition 9. Under Assumptions A.2 and A.3, the conditional expectation and variance
of process Yt (with Yt = [X ′t ,Z

′
t ,vech(XtX ′t )

′]′) are given by:

Et(Yt+1) =

[
∂

∂u
ψY,0(u)

]
u=0

+

[
∂

∂u
ψY,1(u)′

]
u=0

Yt (II.1)

vec(Vart(Yt+1)) = Θ0 +Θ1Yt , (II.2)

where

Θ0 =

[
∂ 2

∂u∂u′
ψY,0(u)

]
u=0

,

and where Θ1 is such that its ((i−1)nY + j)th row is:[
∂ 2

∂ui∂u j
ψY,1(u)′

]
u=0

.

Proof. Since we have:

∂

∂u
Et(exp(u′Yt+1)) = Et(Yt+1 exp(u′Yt+1)),

it comes that
∂

∂u
Et(exp(u′Yt+1))

∣∣∣∣
u=0

= Et(Yt+1).

Now, according to Prop. 2, we have Et(exp(u′Yt+1)) = exp(ψY,0(u)+ψY,1(u)′Yt). Hence, we also
have: [

∂

∂u
Et(exp(u′Yt+1))

]
u=0

=

[
∂

∂u
ψY,0(u)

]
u=0

+

[
∂

∂u
ψY,1(u)′

]
u=0

Yt ,

using, in particular, that ψY,0(0) = 0 and ψY,1(0) = 0 since Et(exp(0′Yt+1)) = 1. The variance
result is obtained in a similar way.
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Corollary 1. Under Assumptions A.2 and A.3, the dynamics of Yt admits the following
vector auto-regressive representation:

Yt+1 = µY +ΦYYt +Σ
1
2
Y (Yt)εY,t+1, (II.3)

where εY,t+1 is a martingale difference sequence satisfying Vart(εY,t+1) = InY (identity ma-
trix of dimension nY ×nY ), and where

µY =

[
∂

∂u
ψY,0(u)

]
u=0

, ΦY =

[
∂

∂u
ψY,1(u)′

]
u=0

,

vec(ΣY (Yt)) := vec
[

Σ
1
2
Y (Yt)Σ

1
2
Y (Yt)

′]
= Θ0 +Θ1Yt ,

Θ0 and Θ1 being given in Prop. 9.

Corollary 2. Under Assumptions A.2 and A.3, we have:

Et(Yt+h) = (InY −ΦY )
−1(InY −Φ

h
Y )µY +Φ

h
YYt

vec [Vart(Yt+h)] = vec
[
ΣY (Yt)+ΦY ΣY (Yt)Φ

′
Y + · · ·+Φ

h−1
Y ΣY (Yt)Φ

h−1
Y
′]

=
(

In2
ε
+ΦY ⊗ΦY + · · ·+Φ

h−1
Y ⊗Φ

h−1
Y

)
(Θ0 +Θ1Yt)

=
(

In2
ε
+ΦY ⊗ΦY + · · ·+(ΦY ⊗ΦY )

h−1
)
(Θ0 +Θ1Yt)

=
(

In2
ε
−ΦY ⊗ΦY

)−1(
Inε
− (ΦY ⊗ΦY )

h
)
(Θ0 +Θ1Yt).

Corollary 3. Under Assumptions A.2 and A.3, we have:

E(Yt) = (InY −ΦY )
−1

µY

vec[Var(Yt)] =
(

In2
Y
−ΦY ⊗ΦY

)−1
vec
[
ΣY
{
(Id−ΦY )

−1
µY
}]

.

Corollary 4. Under Assumptions A.2 and A.3, we have:

Cov(Yt ,Yt+h) = Var(Yt)(Φ
h
Y )
′.

Proof. We have:

Cov(Yt ,Yt+h) = E(YtY ′t+h)−E(Yt)E(Yt)
′ = E(YtEt(Yt+h)

′)−E(Yt)E(Yt)
′

= E(Yt [(InY −ΦY )
−1(InY −Φ

h
Y )µY +Φ

h
YYt ]

′)−E(Yt)E(Yt)
′
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= E(Yt µ
′
Y (InY −Φ

h
Y )
′(InY −Φ

′
Y )
−1 +YtY ′t (Φ

h
Y )
′)−E(Yt)E(Yt)

′

= (InY −ΦY )
−1

µY µ
′
Y (InY −Φ

h
Y )
′(InY −Φ

′
Y )
−1 +E(YtY ′t )(Φ

h
Y )
′−E(Yt)E(Yt)

′

= (InY −ΦY )
−1

µY µ
′
Y (InY −Φ

′
Y )
−1(InY −Φ

h
Y )
′+E(YtY ′t )(Φ

h
Y )
′−E(Yt)E(Yt)

′

= E(Yt)E(Yt)
′(InY −Φ

h
Y )
′+E(YtY ′t )(Φ

h
Y )
′−E(Yt)E(Yt)

′,

which gives the result.
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III Real term premiums in the Consumption Capital Asset Pric-
ing Model

III.1 Term premiums and conditional covariances of the SDF
The term premium of maturity n is defined as the difference between the yield-to-maturity of a
bond of maturity n and the one that would prevail under the expectation hypothesis. That is:

T Pt,n =−
1
n

logEtMt,t+n +
1
n

logEt exp(−rt− rt+1−·· ·− rt+n−1).

The following proposition shows how term premiums can be expressed as a conditional covari-
ance involving future stochastic discount factors (SDFs) and their expectations.

Proposition 10. If the log SDF mt+1 = log(Mt,t+1) is Gaussian and homoskedastic, we
have:

T Pt,n = −1
n
Covt(mt+1−Et(mt+1)+ · · ·+mt+n−1−Et+n−2(mt+n−1),

Et+1(mt+2)+ · · ·+Et+n−1(mt+n)).

Proof. We have

T Pt,n :=−1
n

logEt(exp(mt+1 + · · ·+mt+n))+
1
n

logEt(exp(−rt−·· ·− rt+n−1)).

Since mt+1 is Gaussian, we have

exp(−rt) = Et exp(mt+1) = Et(mt+1)+
1
2
Vart(mt+1).

As a consequence:

T Pt,n = −1
n

logEt(exp(mt+1 + · · ·+mt+n))+

1
n

logEt

(
exp
(
Et(mt+1)+

1
2
Vart(mt+1)+ · · ·+Et+n−1(mt+n)+

1
2
Vart+n−1(mt+n)

))
.

Under homoskedasticity, we have Vart(mt+1) = σ2
m, say, for any t. This gives:

T Pt,n =
1
2

σ
2
m−

1
n

logEt(exp(mt+1 + · · ·+mt+n))+

1
n

logEt (exp(Et(mt+1)+ · · ·+Et+n−1(mt+n))) .

Using that mt+1 + · · ·+mt+n is Gaussian , we obtain:

T Pt,n =
1
2

σ
2
m−

1
2n

Vart [mt+1 + · · ·+mt+n]+
1
2n

Vart [Et(mt+1)+ · · ·+Et+n−1(mt+n)] .
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Let us focus on Vart [mt+1 + · · ·+mt+n]. Since mt+1 = [mt+1−Et(mt+1)]+Et(mt+1), we get:

Vart [mt+1 + · · ·+mt+n]

= Vart [{mt+1−Et(mt+1)}+ · · ·+{mt+n−Et+n−1(mt+n)}]
+Vart [Et(mt+1)+ · · ·+Et+n−1(mt+n)]

+2Covt(mt+1−Et(mt+1)+ · · ·+mt+n−Et+n−1(mt+n),Et(mt+1)+ · · ·+Et+n−1(mt+n)).

Using Vart [{mt+1−Et(mt+1)}+ · · ·+{mt+n−Et+n−1(mt+n)}] = nσ2
m leads to the result.

Proposition 10 implies in particular, for n = 2:

T Pt,2 = −1
n
Covt(mt+1,Et+1(mt+2)). (III.1)

Hence, to have a positive two-period real term premium, we must have Covt(mt+1,Et+1(mt+2))<
0.

III.2 A simple trend-cycle decomposition of consumption
Consider a simplified version of the model developed in the paper, with the aim of exploring
analytically the slope of the term structure of real term premiums. Assume that date-t consumption,
denoted by Ct , is given by:

Ct =C∗t exp(zt),

where C∗t can be interpreted as the consumption trend and zt is its cyclical component (or output
gap). Using small letters for logarithms, we get:

ct = c∗t + zt .

Denoting the trend growth rate by gt , i.e.,

gt = c∗t − c∗t−1 = ∆c∗t ,

we obtain:
∆ct = gt + zt− zt−1.

Assume that both gt and zt follow auto-regressive processes of order one:

gt = (1−ρg)µg +ρggt−1 +ηt

zt = ρzzt−1 +νt ,

where ηt ∼ i.i.d.N (0,σg) and νt ∼ i.i.d.N (0,σz) (Note that what precedes implies, in particular,
that E(∆ct) = µg.)

For simplicity, we replace the Epstein-Zin preferences used in the paper with power-utility
time-separable preferences. In that case, as is well-known, the stochastic discount factor between
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dates t and t +1 is given by:

Mt,t+1 = δ

(
Ct+1

Ct

)−γ

= exp[log(δ )− γ∆ct+1],

and, therefore, mt+1 = logMt,t+1 = log(δ )− γ∆ct+1. In this context, Proposition 10 implies (this
is eq. III.1):

T Pt,2 =−
γ2

2
Covt [∆ct+1,Et+1(∆ct+1)].

Since
Covt [∆ct+1,Et+1(∆ct+1)] = ρgσ

2
g +(ρz−1)σ2

z , (III.2)

we obtain:

T Pt,2 =
γ2

2
[−ρgσ

2
g +(1−ρz)σ

2
z ],

which is positive if:
(1−ρz)σ

2
z > ρgσ

2
g ,

that is, if the contribution of the cyclical component dominates in Covt [∆ct+1,Et+1(∆ct+1)].

Figure III.1: Average term structure of real interest rates
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Notes: Term structures of real interest rates obtained for xt = [µg,0,0]′, with µg = 0.02, γ = 2, δ = 1, ρg = 0.9,
ρz = 0.8, σz = 0.02, and different values of σg. The pricing formulas are those given in Proposition 11.

Figure III.1 extends this analysis for long horizons (using the pricing formulas of Proposi-
tion 10). It confirms that the real term premium real term premiums can be upward sloping if σg is
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small enough compared to σz (at least between horizons one and two). In particular, if σ2
g = 0, the

term premium is positive. In that case, agents know that, if a bad state of the world materializes
in the next date (i.e., νt+1 < 0), then the expected one-period-ahead growth, as of date t + 1, will
then be positive – since agents will then expect the output gap to close – which will translate into
a higher rt+1. Alternatively put, as of date t, agents know that Pt+1,1 will decrease in bad states of
the world, and vice versa. This implies that a two-period bond does not hedge against bad states
of the world, which generates a positive term premium.

In several papers that consider term structures of real rates in a structural framework, con-
sumption growth is essentially based on autoregressive processes akin to gt (this is notably the
case when the model only consider a stochastic autoregressive productivity process). Hence, in
these contexts, the term structure of real rates is necessarily downward sloping.

Proposition 11. The model described in Appendix III.2 can be cast into a VAR form:

xt =

 gt
zt

zt−1

=

 µg(1−ρg)
0
0


︸ ︷︷ ︸

=µ

+

 ρg 0 0
0 ρz 0
0 1 0


︸ ︷︷ ︸

=Φ

 gt−1
zt−1
zt−2

+
 ηt

νt
0


︸ ︷︷ ︸

=εt

. (III.3)

Using the previous notations, the price of a (real) zero-coupon bond of maturity h is given
by

Pt,h = exp(ah +b′hxt),

where {
ah+1 = log(δ )+ah +(bh− γα)′µ + 1

2(bh− γα)′Ω(bh− γα)
bh+1 = Φ′(bh− γα),

with

Ω =

 σ2
g 0 0

0 σ2
z 0

0 0 0

 ,
and a0 = 0, b0 = 0.

Proof. With the notation introduced in (III.3), we have:

∆ct =
[

1 1 −1
]︸ ︷︷ ︸

=α ′

xt ,

and, therefore,
Mt,t+1 = exp(log(δ )− γα

′xt+1).

Hence:

Pt,h+1 = Et(Mt,t+1Pt+1,h) = Et(exp[log(δ )− γα
′xt+1 +ah +b′hxt+1])

= Et(exp[log(δ )+ah +(bh− γα)xt+1])
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= Et(exp[log(δ )+ah +(bh− γα)′(µ +Φxt + εt+1)])

= exp[log(δ )+ah +(bh− γα)′(µ +Φxt)]Et(exp[(bh− γα)′εt+1])

= exp
[

log(δ )+ah +(bh− γα)′(µ +Φxt)+
1
2
(bh− γα)′Ω(bh− γα)

]
,

which leads to the result.

III.3 Implications of the trend/cycle specification on consumption moments
This appendix explores the implications of the trend-cycle representation of consumption growth
on conditional and unconditional moments of consumption growth. Specifically, we examine how
these moments compare to those derived from models where consumption growth is purely autore-
gressive (i.e., with σz in our model).

We focus on the following moments: the conditional and unconditional correlations between
consumption and expected consumption (Corrt−1(∆ct ,Et∆ct+1) and Corr(∆ct ,Et∆ct+1)), the au-
tocorrelation of consumption growth (Corr(∆ct ,∆ct+1)), and the autocorrelation of expected con-
sumption (Corr(Et−1∆ct ,Et∆ct+1)).

Take the first moment. In the context of the model described in Section 2, we have:

Corrt [∆ct+1,Et+1(∆ct+2)] =
ρgσ2

g +(ρz−1)σ2
z√

σ2
g +σ2

z

√
ρ2

g σ2
g +(1−ρz)2σ2

z

.

This correlation takes extreme values when σg = 0, in which case it is equal to −1, and when
σz = 0, in which case it is equal to 1. With our estimated specification, shown in Table 2, it is equal
to −0.979 (see Table III.1). It is possible to compute an empirical equivalent to this moment by
using SPF data. Indeed, assuming homoskedastic processes, we have:

E[Corrt−1(∆ct ,Et∆ct+1)] =
E[(∆ct−Et−1∆ct)(Et∆ct+1−Et−1∆ct+1)]√

Var(∆ct−Et−1∆ct)
√

Var(Et∆ct+1−Et−1∆ct+1)
.

To compute an empirical counterpart of this expression, we need observations of Et∆ct+1 and
Et∆ct+2. Proxies for these can be calculated from the mean GDP forecasts of professional forecast-
ers (Philadelphia Federal Reserve Bank), substituting consumption with GDP growth. The findings
are presented in Table III.1 (first row). Focusing on the last 30 years, the empirical correlation is
approximately −40%, which is closer to −1 than to 1, suggesting a preference for consumption
growth models that incorporate an output gap (versus a purely autoregressive model).

Let us turn to the unconditional correlation between consumption and expected consumption.
Setting ρgz = 0 (i.e., neglecting the hysteresis effect), one can show that the model-implied uncon-
ditional correlation is given by:

Corr(∆ct ,Et(∆ct+1)) =

ρg
1−ρ2

g
σ2

g −
1−ρz
1+ρz

σ2
z√

1
1−ρ2

g
σ2

g +
2

1+ρz
σ2

z

√
ρ2

g
1−ρ2

g
σ2

g +
1−ρz
1+ρz

σ2
z

.
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It can be seen that, when σz = 0 (no output gap), this correlation is still extreme, as it is equal to
one. It is not the case for σg = 0. In the latter case, we have:

Corr(∆ct ,Et(∆ct+1)) =−
√

1−ρz

2
.

The second row of Table III.1 compares the correlation Corr(∆ct ,Et(∆ct+1)), based on different
specifications, with empirical correlations. The empirical correlations are relatively close to zero,
aligning more closely with output-gap models than with models that include only an autoregressive
component only (gt in our model).

Next, consider the autocorrelation of consumption growth (see the third line of Table III.1). In
the data, this autocorrelation is close to zero, which is also the case for our baseline specification.
By contrast, for g-only models, this autocorrelation is equal to ρg, and therefore too high compared
to the data when ρg is close to one.

The last row of Table III.1 addresses the autocorrelation of expected consumption growth. The
model-implied values are close to one across the considered specifications (with or without g/z
components), exceeding the empirical correlations, which range from 65% to 75%.

Overall, this analysis indicates that incorporating an output gap leads to a better alignment of
model-implied and empirical correlations between consumption growth and its lag or expectations
(compared to a model where consumption growth is solely autoregressive).

Table III.1: Correlations between consumption growth and expectations

Model Data
no z no g ρgz = 0 basel. 1969-2024 1994-2024

GDP PCE GDP PCE
Corrt−1(∆ct ,Et∆ct+1) 1.000 −1.000 −0.979 −0.979 −0.160 −0.447 −0.427 −0.447
Corr(∆ct ,Et∆ct+1) 1.000 −0.166 −0.105 −0.134 0.267 0.091 −0.032 0.041
Corr(∆ct ,∆ct+1) 0.990 −0.020 −0.015 −0.017 −0.004 0.107 −0.154 −0.073
Corr(Et−1∆ct ,Et∆ct+1) 0.990 0.959 0.969 0.964 0.755 0.755 0.651 0.651

Notes: This table compares model-implied (auto)correlations to empirical counterparts. The “basel.” column corre-
sponds to the model presented in Section 2, whose parameterization is detailed in Table 2. The previous columns
correspond to the same model, but with σz = 0 (“no z” column), σg = 0 (“no g” column), and no hysteresis effects
(“ρgz = 0” column). Two sample periods are considered: 1969Q2-2024Q1 and 1994Q1-2024Q1. Data for Et−1∆ct
and Et−1∆ct+1 are based on the US SPF, extracted from the Philadelphia Federal Reserve Bank website. For empirical
moments, while forecasts are always expected GDP growth rates, ∆ct is either based on GDP or Personal Consump-
tion Expenditures (PCE) data, extracted from the FRED database. While the last three lines report unconditional
correlations; the first line reports average conditional correlations.

III.4 The relevance of hysteresis effects for the term structure of real rates
Section 2.5 discussed the main model ingredients for generating an upward-sloping real term struc-
ture. This annex analyses the amplifying hysteresis channel in more depth.

In our specifications, hysteresis effects are introduced through parameter ρgz (see eq. 1): if
ρgz > 0, periods of negative output gap (zt) imply reductions in the trend of consumption growth
(gt). Hence, a recession (zt < 0) is a bad state of the world for two compounded reasons: (i) by
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definition, consumption is low – below it trend – when zt < 0, and (ii) when ρgz > 0, the fact that
zt < 0 reduces expected trend growth rate. This is illustrated by the lower plots of Figure III.2,
which compare the response of the consumption level (ct) to increases in zt in two situations: no
hysteresis effect (ρgz = 0) for the left plot and existence of an hysteresis effect (ρgz > 0) for the
right plot. The key difference is that while the effect completely dies out when ρgz = 0, it is not
the case when ρgz > 0. Consequently, for a given state of recession, hysteresis effects worsen
consumption prospects, leading to higher risk prices which, in turn, amplifies forward premiums.

The upper plots of Figure III.2 illustrate the influence of hysteresis effects on real term pre-
miums. Term premiums appear to be larger when ρgz > 0 (i.e., with hysteresis effect, right plot),
than when ρgz = 0 (left plot). Figure III.3 shows how the term premiums depend on the coefficient
of risk aversion, for the values of σz and σg indicated on Figure III.2 with red dots. Real term
premiums appear to be more sensitive to the coefficient of risk aversion with hysteresis effects.
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Figure III.2: Real term premium and hysteresis effect
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Notes: This figure illustrates the influence of the permanent and transitory and permanent consumption shocks, as
well as the hysteresis effect, on the real term premium. The real term premium is defined in (23)); it is given by
E(rt,40−rt,1); it is also the average slope of the term structure of real rates. Only the real part of the model is concerned
(i.e., eqs. 1, 2, 12), agents feature Epstein-Zin preferences (see Subsection 2.2), with a constant coefficient of risk
aversion. The left plots correspond to the case where ρgz = 0 – the situation with no hysteresis effects; by contrast,
there is an hysteresis effect in the model underlying the right plots. The upper plots show how the real term premium
depends on σg and σz, that are the respective standard deviations of the shocks affecting the persistent component of
consumption growth (gt ) and the transitory component of the cyclical component of consumption level (zt ). The lower
plots show the impulse response functions of (log) consumption ct to a unit increase in zt ; the bottom-right plot shows
that, in a context of hysteresis, these shocks (εz,t ) have a permanent effect on consumption. The upper plots show
that real term premium positively depend on σz and negatively on σg. The top-right plot also shows that, when σg is
low, the hysteresis effects allow to generate higher (positive) real term premiums. The model parameterization is as
follows: ρz = 0.8, ρg = 0.9, µc = 2%, γt = µγ,0 = 10. The red dots indicate the values of σz and σg used in Figure III.3.
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Figure III.3: Real term premium, hysteresis effect, and risk aversion
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Notes: This figure illustrates the influence of the risk aversion coefficient on the term premium. The real term premium
is defined in (23)); it is given by E(rt,40−rt,1); it is also the average slope of the term structure of real rates. We consider
two models: one is with hysteresis effects (ρgz > 0, solid line) and the other is without hysteresis effects (ρgz = 0, dotted
line). Only the real part of the model is concerned (i.e., eqs. 1, 2, 12), agents feature Epstein-Zin preferences (see
Subsection 2.2), with a constant coefficient of risk aversion γ . We consider different values of the coefficient of risk
aversion (x axis). The model parameterization is as follows: ρz = 0.8, ρg = 0.9, µc = 2%, γt = µγ,0 = 10. The values
of σz and σg are those indicated by red dots in Figure III.2; for the model with hysteresis effects: ρgz = 0.003. The
vertical bar indicates the value of the coefficient of risk aversion used in Figure III.2.
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