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Abstract

We study the application of approximate mean field variational inference algorithms
to Bayesian panel VAR models in which an exchangeable prior is placed on the dynamic
parameters and the residuals follow either a Gaussian or a Student-t distribution. This
reduces the estimation time of possibly several hours using conventional MCMC methods
to less than a minute using variational inference algorithms. Next to considerable speed
improvements, our results show that the approximations accurately capture the dynamic
effects of macroeconomic shocks as well as overall parameter uncertainty. The application
with Student-t residuals shows that it is computationally easy to include the COVID-19
observations in Bayesian panel VARs, thus offering a fast way to estimate such models.

Keywords: Variational Bayes, Panel-VAR, Student-t distribution
JEL Codes: C18, C32, C33
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Non-Technical Summary
In this paper we study mean field variational inference (MFVI) algorithms in the context
of Bayesian panel VAR models (BPVAR) in which an exchangeable prior is placed on
the model’s dynamic parameters. These models are attractive for policy analyses and
forecasting exercises, especially if the time series dimension of the data is short, because
one can infer model dynamics from a richer set of observations across units and increase
the effective sample size. However, estimating such models via conventional sampling
methods that numerically explore the parameter space is computationally expensive. The
aim of this paper is to apply algorithms relying on approximate MVFI techniques that
considerably reduce the estimation time. The speed gains result from the fact that MFVI
turns the estimation problem into a function maximization problem which is deterministic,
thus avoiding the need for stochastic sampling schemes.

This benefit does, however, come at the cost of deliberately ignoring certain posterior
correlations among parameters. The joint posterior over the model’s parameters is not of
a known form, which is why conventionally sampling methods are used to characterize it.
MFVI methods, on the other hand, assume a factorization of this posterior distribution
that breaks it up into several independent factors, each of which is easy to characterize.
Once a given factorization has been assumed, the individual factors are characterized by
deterministic sufficient statistics only, and a fast iterative scheme can be employed to find
these statistics. Since this convenience sacrifices potentially important features of the true
posterior distribution, our aim to study how accurate, and therefore useful, the resulting
approximation is.

We present two applications to test the efficacy of MFVI methods to estimate BPVAR
models. The first is a replication of the study by Jarociński (2010) in which the VAR
residuals are Gaussian, and the model is used to investigate the responses across coun-
tries to monetary policy shocks. In the second application the residuals instead follow a
Student-t distribution which has heavier tails. This extension generally allows for more
robust inference, and is further particularly relevant when dealing with the COVID-19
observations because heavy-tailed residuals can safeguard against parameter bias due to
outliers. In both applications we find MVFI methods to produce results almost as accu-
rate as conventional sampling algorithms at a fraction of the computational time. More
specifically, both the dynamic responses to shocks as well as the surrounding uncertainty
are well captured by the approximations.

We conclude that the usefulness of MVFI approximations, previously established for
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conventional VAR models, also extend to more complex time series models. This means
that a convenient alternative to computationally burdensome sampling methods is avail-
able and could, for instance, fruitfully be applied to recursive forecasting exercises or
extensive model testing.
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1 Introduction
Variational inference (VI) methods are becoming more popular in the VAR model litera-
ture as an alternative to conventional Markov Chain Monte Carlo (MCMC) methods such
as Gibbs sampling. The latter are typically easy to implement as conditional posterior
distributions take simple forms, and given a sufficient number of draws, one can character-
ize the posterior distribution of the models parameters to any desired degree of accuracy.
This, however, can become time consuming depending on the convergence properties of
the sampler. VI methods on the other hand, especially those based on mean field ap-
proximations (MFVI), offer fast algorithms to estimate Bayesian models which have been
found to provide results of comparable accuracy to sampling methods. The gain in speed
provided by MFVI approximations stems from the fact that these involve deterministic
function maximization instead of stochastic sampling. Intuitively, the goal is to replace
an intractable posterior distribution with a tractable approximating distribution which is
chosen to be close to the true posterior as measured by the Kullback-Leibler divergence.

In this article we apply MFVI methods to Bayesian Panel VAR models with an ex-
changeable prior and possibly non-Gaussian error terms. In this setup, MCMC methods
are cumbersome because the number of parameters not only grows in the number of vari-
ables, but also in the number of units included in the panel. Furthermore, there typically
exist strong dependencies between unit specific parameters and parameters common to
all units, leading to high correlation between subsequent MCMC draws. A large number
of draws is then necessary to characterize the posterior accurately, making estimation a
numerically daunting task. Our paper investigates the efficacy of MFVI approximations
in this setup as a fast estimation alternative.

We find that the MFVI approximation accurately captures both the magnitudes and
dynamic properties of the estimated systems as measured in terms of impulse response
functions. In addition, error bands constructed under this approximation have similar
coverage compared to the MCMC results. At the same time, MFVI estimation takes a
fraction of the time necessary for MCMC inference. Therefore, one can reap consider-
able speed gains while still quantifying estimation uncertainty accurately. This is quiet
important because mean field approximations may severely underestimate posterior vari-
ances, thus leading to incorrect conclusions from the estimation. Another contribution
of our paper is the application of MFVI methods to t-distributed errors in these mod-
els. As shown in Hartwig (2022), Lenza and Primiceri (2022) and Bobeica and Hartwig
(2023), including the Covid-19 observations in standard Gaussian VAR models can lead to
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severely distorted inference, and that heavy-tailed errors can safeguard against this. This
can be easily handled using a simple approximation that delivers posterior tractability for
MFVI and leads to accurate results also in the extended model.

Relating to the literature, earlier work by Hajargasht (2019) showed that for standard
macroeconomic VAR models, VI delivers very accurate results. Recent articles by Chan
and Yu (2022), Gefang et al. (2023) and Korobilis and Schröder (2024) also find VI to
perform very well both in terms of speed and accuracy as alluded to above, making VI a
competitive alternative to MCMC methods. This paper is also related to the literature
on VI methods for linear and generalized mixed models such as Lee and Wand (2016),
Christmas (2014), Nolan et al. (2020), Menictas et al. (2022), and Hughes et al. (2023).
Specifically, the computational insights developed in these papers are directly applicable to
the model studied here, leading to an efficient implementation of the MFVI approximation.

The remaining of this article is organized as follows. Section 2 outlines the general
model and describes the approximation to the true posterior. Section 3 contains two
applications. The first is the original model considered in Jarociński (2010) to show that
the proposed method accurately captures the true distribution when errors are normally
distributed. The second application considers a dataset that includes the Covid-19 obser-
vations and relaxes the normality assumption. Section 4 offers concluding considerations,
and the appendix contains details on estimation methods.

2 Model setup
The model we consider is the hierarchical panel VAR model considered in Jarociński
(2010), extended to include departure from Gaussian errors as outlined in Geweke (1993)
and Chan (2020):

yc,t =
L∑

l=1
Bc,lyc,t−l + ∆cwt + Γczc,t + uc,t (1)

uc,t ∼ N (0, ωc,tΣc) (2)

ωc,t ∼ IG
(
νc

2 ,
νc

2

)
(3)

where yc,t is a N × 1 vector of endogenous variables for country c, wt is a W × 1 vector of
exogenous variables common to all countries, and zc,t contains country specific exogenous
variables, including possibly a constant. As shown in Geweke (1993), this model is equiv-
alent to assuming that the error terms follow a multivariate t-distribution with νc degrees
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of freedom. We assume that these vary across units, because in the recent use of this
error structure in the macroeconomic time series literature, heavy-tailed errors have been
used to stabilized inference in the presence of the Covid-19 observations, which likely did
not have a homogeneous impact across countries.

To facilitate the derivations, two convenient and equivalent formulations of the above
model are usually used. In the first we can stack the equations in the VAR into matrices
as:

Yc = XcBc + ZcΓc + Uc (4)

so that Yc and Uc are T ×N matrices, and Xc is a T ×K that contains lagged endogenous
and common exogenous variables, where K = NL + W . Γc has dimensions T × Nzc and
stacks the country specific exogenous variables.

The second representation vectorizes the data matrices above, meaning that we stack
the columns of each matrix below each other to obtain:

yc = (IN ⊗Xc)βc + (IN ⊗ Zc)γc + vec(Uc) (5)

vec(Uc) ∼ N (0,Σc ⊗ Ωc) (6)

with yc = vec(Yc), βc = vec(Bc), and γc = vec(Γc). Ωc is the T × T matrix with the ωc,t

on the diagonal and zeros elsewhere.
The first formulation is the most convenient when it comes to deriving conditional

posterior distributions of the error covariance matrices in VAR models, since the likelihood
in this case, conditional on other parameters, has a similar structure as the density of
the Inverse-Wishart distribution, which is also the common prior distribution for such
parameters. The second representation of the model, instead, is more convenient to
derive conditional posterior distributions for the remaining parameters. We also make
use of both representations when we derive the approximation to be discussed shortly.
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2.1 Prior distributions

For the parameters of the model the following priors are specified. First, for the dynamic
coefficients an exchangeable prior is used:

βc ∼ N (β0, λΛc) (7)

β0 ∼ N (µβ0 , Vβ0) (8)

λ ∼ IG
(
s0

2 ,
ν0

2

)
(9)

γc ∼ N (µγc,0 , Vγc,0) (10)

This means that the dynamic coefficients for each country are drawn from the same
distribution, reflecting the idea that each country is a variation of the same underlying
model. The matrices Λc are taken to be given and parameterized similar to the Minnesota
prior distribution exactly as in Jarociński (2010). Non-informative priors can be used by
setting V −1

β0 = 0, V −1
γc,0 = 0, s0 = −1 and ν0 = 0. Setting the latter two parameters implies

a uniform prior for
√
λ.

For the covariance matrix Σc generally an Inverse-Wishart distribution is assumed

Σc ∼ IW(Rc,0, dc,0) (11)

One can set Rc,0 = (dc,0 −N − 1)diag(σ2
c,1, . . . , σ

2
c,N) and dc,0 = N + 2, where the diagonal

entries are obtained from univariate autoregressive models with a constant and L lags.
An often used alternative is the Jeffrey’s prior. In the formulas for optimal densities and
conditional posteriors, this prior can be implemented by setting dc,0 = 0 and Rc,0 = 0.

To complete the prior specification we assume a uniform distribution for the degrees
of freedom νc:

νc ∼ U(ν, ν) (12)

where we set ν = 2 and ν = 50 following Chan (2020). The upper bound is chosen to be
large enough so that the errors can be normal (approximately), yet small enough that the
assumption of Gaussian errors is not enforced through the prior, i.e. that not too much
prior probability mass is placed on large degrees of freedom. An alternative that we do
not pursue in this article is an exponential distribution for νc, which is the approach taken
in Geweke (1993).
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2.2 Posterior approximation

As it stands, the above model does not have a known joint posterior density over its
parameters. The usual way around this problem is to implement a Gibbs sampler to
sequentially draw from the conditional posterior distributions, which in the above model
needs to be augmented with a Metropolis-Hastings step to sample the degrees of freedom
parameters of the t-distributions. Draws from such a sampler will converge to the true
posterior distribution after a sufficient number of draws, and details on this implementa-
tion can be found in Appendix C. However, this is computationally demanding in this
model, so we seek a faster albeit approximate way of estimating it.

Before going into the details of the posterior approximation used in this paper, we
briefly discuss the general idea behind variational inference (see e.g. Bishop (2006) or
Blei et al. (2017) for further details). For a generic model with parameters θ and observed
data y interest lies in characterizing the posterior distribution p(θ|y). This distribution,
however, is typically too complex to be analysed analytically. The VI approach then
specifies a tractable joint density function q(θ) over the models’ parameters to best fit the
true posterior distribution. To formally illustrate the idea one makes use of the following
decomposition of the marginal likelihood:

ln(p(y)) =
∫
q(θ) ln

(
p(y, θ)
q(θ)

)
dθ +

∫
q(θ) ln

(
q(θ)
p(θ|y)

)
dθ

≡ L(q) +DKL(q||p)

where the second term is the Kullback-Leibler divergence. Since DKL(q||p) ≥ 0, we have
ln(p(y)) ≥ L(q), which is why the first term is often referred to as the Evidence Lower
Bound (ELBO). The goal is then to minimize the divergence with respect to q, which is
equivalent to maximizing the ELBO because the marginal likelihood is independent of q.
Minimizing the Kullback-Leibler divergence is not feasible because it involves the unknown
posterior, but evaluating the ELBO is possible because it only involves expectations of
the joint density under q and the entropy of the approximating density, which in turn is
typically easy to obtain.

To actually obtain a tractable distribution we make the popular mean field assumption
that the approximating density q factors into m independent parts:

q(θ) =
M∏

m=1
qm(θm) (13)
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Second, given this structure of q(θ), one can show that minimizing the Kullback-Leibler
divergence between q(θ) and p(θ|y) means that the individual densities must satisfy

ln
(
q⋆

j (θj)
)

∝ Ei=j [ln(p(θ, y))] (14)

Equation (14) provides us with a simple recipe for finding the optimal constituent den-
sities. We first write down the log joint density over parameters and observed data.
Then, for any given parameter block m, take expectations with respect to everything
other than the parameters in block m and inspect the resulting expressions to find simple
distributional forms.

The question then is which factorization to assume. One possibility is to use the same
blocking scheme as used in the MCMC algorithm, thus factorizing over all parameters.
While such an approach seems to work well for VAR models at country level with typical
prior distributions, here it can lead to a poor approximation of the posterior. The reason
is that likely there exist strong dependencies between β0, λ and the country coefficients
in the true posterior. Therefore, any approximation which breaks this dependency may
fail to capture important features of the true distribution. Generally speaking, one wants
to retain as much dependency between parameter blocks as possible, but some posterior
dependencies must be sacrificed in order to determine q analytically. Here we use the
following factorization inspired by Wand (2014), Lee and Wand (2016) and Nolan et al.
(2020):

q(θ) = q(δ)q(λ)
C∏

c=1
q(Σc)q(νc)

T∏
t=1

q(ωct) (15)

where δ is the (N2L+CNK) × 1 vector containing the common mean β0 and all country
coefficients βc and γc. To avoid notational clutter we have suppressed subscripts to indicate
that the factors are different densities, but this should be kept in mind. This factorization
can model dependencies between the common mean and the country coefficients, but
still imposes that the common variance parameter λ is independent from the remaining
parameters in the posterior. As we show below, this factorization is rich enough to
capture the VAR dynamics and still leads to simple q-factors for most parameter blocks.
Namely, the optimal density for δ is a Multivariate Normal distribution, the optimal
density for λ is an Inverse-Gamma distribution, the error covariances Σc individually
follow Inverse-Wishart distributions, and the ωc,t follow Inverse-Gamma distributions.
Details and derivations are provided in Appendix B.
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Let us briefly illustrate the actual steps for the case of the optimal factor for one of
the residual covariance matrices Σc. Recall that the optimal density q(Σc) satisfies (14)
which tells us to investigate the expectation under q of log joint density over parameters
and data. Writing out the likelihood function and relegating everything unrelated to Σc

to the normalization constant we have:

Eq(−Σc) [ln(p(θ, y))] ∝ −dc,0 + T +N + 1
2 ln(|Σc|) − 1

2 tr
{
Σ−1

c

(
Rc,0 + µU ′

cUc

)}
(16)

where Uc = Yc −XcBc − ZcΓc. µU ′
cUc denotes the expectation over the quadratic form of

VAR residuals, which does not simply reduce to a quadratic form of expectations, since
one also has to account for the covariance between the elements of Uc. The formulas
in Hajargasht (2019) show how expectations over quadratic forms are computed, and
the details are not important for the discussion at hand. The important point to note
here is that, if the optimal factor for the VAR parameters has a convenient and known
form, one can easily compute this expectation. In particular, it turns out that q(δ) is
a multivariate normal distribution, so the means and covariance terms corresponding to
country c tell us everything we need to know to analytically find µU ′

cUc . From this it
follows that the optimal factor for Σc is an Inverse-Wishart distribution. The fact that
the solution depends on the moments of other optimal factors is not a problem since we
can simply iterate over the factors, updating each of them in turn.

The previous steps are repeated for all optimal factors, but when we come to the
degrees of freedom parameters νc, we run into a problem. Generally, the optimal densities
for this parameter given (15) have the form:

log(q(νc)∗) ∝ Tνc

2 log(νc/2) − T log(Γ(νc/2)) − νc

2

T∑
t=1

(
µlog(ωc,t) + µω−1

c,t

)
(17)

where µlog(ωc,t) and µω−1
c,t

are the expected values of log(ωc,t) and ω−1
c,t under q, respec-

tively. This is not the kernel of a known density and thus cannot be used as is. Chan
and Yu (2022) in their application to models with stochastic volatility also face the issue
that in their proposed mean field approximation the relevant approximating factor is of
unknown form. They overcome this problem by minimizing the Kullback-Leibler diver-
gence between this unknown density and an approximating Normal distribution, letting
them derive an approximate but analytically tractable Gaussian factor. This approach,
however, does not work here because minimizing the divergence between the unknown
density (17) and some (Gaussian) approximating density f would require us to evaluate
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the expectation of the log-gamma term Ef log(Γ(νc/2)) under the approximating density,
which is not straightforward. Instead, we follow Christmas (2014) and approximate this
term using Stirling’s formula:

Γ(z + 1) ∼
√

2πz
(
z

e

)z

(18)

Together with the fact that Γ(z) = Γ(z + 1)/z we arrive at the following expression:

log(q∗(νc)) ≈ c+ T

2 log(νc) − νc

2

(
T∑

t=1

(
µlog(ωc,t) + µω−1

c,t

)
− T

)
(19)

which we recognize as the kernel of a Gamma distribution with parameters aν = T/2 + 1

and bνc = 2
(∑T

t=1

(
µlog(ωc,t) + µω−1

c,t

)
− T

)−1
, and so we use this as the factor for the

degrees of freedom. Note that this factor has the intuitive feature that as the errors come
close to being Gaussian, the period specific scaling factors ωc,t are close to one. This
causes the mean of the Gamma distribution to become large, as in this case bνc is close
to zero.

Two remarks are in order regarding this approximation. First, the support of the
Gamma density should ideally be truncated to the interval specified by the prior for νc.
However, checking convergence of the ELBO requires to evaluate the entropies of the
q-factors, and this is easier to do using the unrestricted Gamma distribution. Second, the
approximation to the Gamma function above works well asymptotically and is actually
worst for small values of νc. This could pose a serious problem, given that previous results
in the literature show that when the data support heavy-tailed error term distributions,
virtually all posterior mass is located at small values for the degrees of freedom (see for
instance Hartwig (2022) or Bobeica and Hartwig (2023)). However, our results for the
second application suggest that the approximation error does not introduce noticeable
bias overall because impulse response functions and the latent volatility parameters ωc,t

are accurately recovered in the posterior.
In practice we initialize the moments of these densities at some convenient values and

then cycle through them to update the moments individually. This process is repeated
until the change in the ELBO is less than 10−4.1 For the derivation of the ELBO see
Appendix B. Furthermore, we make use of the results in Lee and Wand (2016) who show
how to efficiently implement the updates of the optimal factor for δ. Once this procedure
has converged, it is easy to obtain any desired moment from the (approximate) posterior

1Increasing the convergence tolerance to 10−7 did not affect the results.
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through simulation from the individual q-factors. Note that by definition, the draws thus
produced are i.i.d., in contrast to the draws from a MCMC chain.

2.3 Accuracy assessment

Once the optimization has converged, we would like to know how accurate the approxi-
mation is. Katsevich and Rigollet (2023) are able to obtain bounds on the approximation
error when the true posterior is approximated by a joint Gaussian distribution over the
parameter vector, but the authors note that the approximation error for mean field ap-
proximations in general is presently unknown. Hajargasht (2019) is able to derive the
approximation error for his mean field approximation analytically for a conventional VAR
model with a natural conjugate prior, but he also notes that once the conjugacy as-
sumption is dropped, no analytical results on the approximation error are available as
the posterior is unknown in this case. In general, judging the approximation qualities of
mean field distributions is complicated by the fact that there are many possible choices
to make about the factorization of the posterior. While any such factorization provides a
valid lower bound on the marginal likelihood, some a clearly poorer than others in terms
of accuarcy which cannot be judged based on the value of the respective ELBO. Generally
speaking, however, one can note that the more independent factors one assumes in the
posterior, the poorer the approximation should become, and a factorization that models
jointly as many parameters as possible while still being analytically tractable is expected
to be the most accurate within the class of mean field approximations.

To assess the accuracy of the approximation, we employ the recommended measure
by Faes et al. (2011). For a generic parameter θ, they propose to judge the accuracy of
the approximating density by the following statistic:

accuracy(q) = 100
(

1 − 1
2

∫ ∞

−∞
|q(θ) − p(θ|y)|dθ

)
(20)

where the integral denotes the Integrated Absolute Error (IAE). This measure lies between
0 and 100 and is interpreted as a percentage, which 100 meaning that the distributions are
the same. The true posterior p(θ|y) is approximated using the MCMC results. For q we
use the sampled parameters as well to base the comparison on actual sampled values for
both distributions. Specifically, we first use MATLAB’s ksdensity function to fit separate
kernel density estimates to the posterior draws for a given parameter. For distributions
known to have positive support, we take the natural logarithm of the sampled values in
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order to easier approximate the sampled distribution with a kernel estimate. Afterwards,
a linear interpolation function is specified to be able to evaluate the densities at all
parameter draws. Finally, MATLAB’s integral function is used to evaluate the integral
in (20). The integration bounds are determined as the smallest and largest value of the
samples from both q(θ) and p(θ|y).

Additionally, we visually judge the approximation quality by comparing impulse re-
sponse functions generated from the models. The individual VAR parameters are typically
not interpretable, and studying the dynamic effects of shocks through the system is one
conventional way of reporting VAR results. As these are highly non-linear functions of
the estimated parameters, it is important to know that not only are individual param-
eters’ distributions well approximated, but also that any approximation errors do not
compound and distort the results. Furthermore, visual inspection of the results also helps
to understand whether parts of the parameter space which are not well captured actually
matter for the statistics of interest.

3 Applications

3.1 Monetary policy shocks in the west of Europe

As the first application we replicate the results from Jarociński (2010) where the er-
ror distribution is assumed to be standard Gaussian, to benchmark the method against
established results. Each country has four endogenous variables: the log of industrial
production, the log of consumer price index, the short-term market interest rate, and the
log of the exchange rate in national currency units per euro. The lag length is set to
six. Furthermore, the Federal Funds rate, oil prices and non-fuel commodity prices are
included as exogenous variables in the vector wt. Lastly, German industrial production
(log), the German interbank market interest rate and the D-mark/USD exchange rate
are included as exogenous variables to which the exchangeable prior does not apply. Of
these exogenous variables lags zero and one are included, except for German industrial
production, which enters with lags one and two. The data starts in January of 1987 and
ends in December of 1998. The data are taken from the replication files accompanying
the article by Jarociński (2010).

In this application the non-informative prior described in section 2 is used. MCMC
results were obtained after an initial burn-in period of 10,000 draws. Afterwards, another
1,000,000 draws were obtained, of which every 100th draw was retained, giving 10,000
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Figure 1: Impulse response functions to monetary policy shocks.

Notes: Blue shaded areas denote fancharts of the pointwise MCMC posterior between the 5 and 95
percentiles, with steps of 5%, and the pointwise median shown as solid black lines. Solid red lines are
the pointwise medians from VI, and the pointwise 5 and 95 percentiles are shown as red-dashed lines.
Monetary policy shocks are identified as in Jarociński (2010).

posterior draws used for inference. The same number of draws were taken from the
approximating density q after maximization of the ELBO.2 For the impulse response
functions reported below, we implement the same identification strategy of monetary
policy shocks as in Jarociński (2010). For the VI approach, after convergence of the
algorithm we draw country parameters for βc and Σc from their respective distributions
(because they are independent by assumption) and check whether the sign restrictions
are satisfied as we would during the MCMC iterations.3

The major draw for VI methods is the speed with which Bayesian models can be
estimated. In this application, running the MCMC chain takes roughly 2.5 hours, whereas

2Programs were run in MATLAB on a machine with an Intel Xeon Platinum 8180 @2.50GHz processor.
3This step can be parallelized, but it takes less than half a second to sample the IRFs, so we did not

implement this for the results presented here.
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maximizing the ELBO and sampling from the posterior takes less than 30 seconds. As
Figure 1 shows, this gain in speed comes at only a small cost when it comes to capturing
the dynamic effects of shocks to the system. There, we plot the results from the MCMC
algorithm against the results from the approximation. The blue-shaded areas show the
pointwise posterior credit sets and the solid black lines denote the pointwise median
response for the MCMC results. The red-dashed and red solid lines denote the respective
results from the VI approximation. We observe that the pointwise medians match very
closely, and the differences one can make out, e.g. the output response for Portugal or
the exchange rate response of Finland, are small. Equally important is that the pointwise
error bands for the impulse responses are also very close to the simulation results. This
is generally not guaranteed because VI methods can severely underestimate posterior
variances, depending on how much of the posterior correlations between parameters are
sacrificed for tractability. This is not the case in this application, and overall we find that
one would not draw different conclusions from the approximate results compared to the
MCMC results.

Figure 2 shows accuracy measures for different parameters of the model. The top panel
shows, for each country, boxplots for the accuracy measure for the dynamic parameters
βc. Clearly, the vast majority of parameters are well captured by the approximation
with accuracy mostly exceeding 90%, although the accuracy is slightly worse for some
parameters. However, as Figure 1 showed, this does not seem to affect overall accuracy
for the dynamic relationships in this model. The second panel shows accuracy measures
for the diagonal elements of the error covariance matrices. These boxplots show greater
heterogeneity across countries, but overall accuracy rarely dips below 85%. One drawback
of the approximation, though, is that it does not well capture the posterior distribution
for the common variance parameter λ, and severely understates its posterior variance
(not shown). However, for common purposes such as forecasting and impulse response
analysis this parameter is not of particular practical interest, because once draws for
the VAR parameters and error covariance matrices are obtained from their respective
distributions, everything else follows. And given that these can be accurately generated,
this inaccuracy seems acceptable.

3.2 Estimation with Covid-19 observations

In the second application, we use quarterly data on the five largest Euro Area economies
Germany, France, Italy, Spain, and the Netherlands. We include six macroeconomic time
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Figure 2: Application 1 - accuracy measures for selected parameters.

Notes: Each boxplot summarizes the distribution of the accuracy measure across the parameters in the
respective group by country. For example, the boxplot for β1 summarizes the accuracy measures for coun-
try one’s VAR parameters subject to the exchangeable prior. The second panel show the corresponding
statistics for the diagonal elements of the error covariance matrices for each country.

series, namely GDP, consumption expenditures, the harmonized consumer price index, the
civilian unemployment rate, a nominal short-term rate for the Euro Area, and country
specific stock prices indices. The sample period ranges from 1997Q3 until 2022Q4. All
variables except those already expressed in rates are normalized to 1 in Q4 of 2010 to place
them on a similar scale, and transformed to natural logarithms. The unemployment rate
and the short-term rate are expressed in decimals, such that a value of 0.1 corresponds
to a value of 10%. Of the endogenous variables, 2 lags are included. All data are sourced
from the ECB Statistical Data Warehouse.4 A list including series keys and whether
the series is publicly available is provided in Appendix A. Following results in Hartwig

4https://data.ecb.europa.eu/
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Figure 3: Impulse response functions - model with t-errors.

Notes: Blue shaded areas denote fancharts of the pointwise MCMC posterior between the 5 and 95
percentiles, with steps of 5%, and the pointwise median shown as solid black lines. Solid red lines are
the pointwise medians from VI, and the pointwise 5 and 95 percentiles are shown as red-dashed lines.
Impulse responses to fifth shock, calculated as the Cholesky factorization of the error covariance matrix,
where the variables are ordered as they appear in the figure.

(2022), the prior covariance matrices Ωc are calibrated using data until 2019Q4 only to
avoid inflated residual variance estimates in influencing the prior. The MCMC results for
this application were generated with the same number of draws and burn-in period as in
the previous application. Details on the algorithm are provided in Appendix C.

Figure 3 shows that also in the extended model with t-errors the method performs very
well as evidenced by the responses to a shock to the short-term rate. For convenience,
the impulse responses shown are obtained from the Cholesky decomposition of the error
covariance matrix, with the variables ordered as they appear in the figure, and we do not
attach any particular structural interpretation to these results. The conclusions for the
impulse response functions are the same as above, with only slight differences between
the pointwise median IRFs and similar coverage of the error bands. Also here, VI is quiet
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fast, taking around 43 seconds to produce the results reported here.
Figure D.1 in the Appendix shows the same accuracy measures as in the previous

application. Also here, the dynamic coefficients are well captured and only slightly worse
than before. Notably, for the diagonal elements of the error covariance matrix, there is a
larger dispersion in accuracy across countries, and also overall the approximation seems
to perform somewhat worse. However, as the previous figure showed, this does not imply
that the relevant dynamics are not well captured. Also, in Figures D.2 - D.6 in Appendix
D we report the estimated error scaling factors for both methods for each country. Shown
are posterior quantiles of √

ωct over time for both methods. Also there the proposed
method very accurately captures the latent volatility as well, despite the fact that next
to the assumed factorization of the posterior, an additional approximation was needed to
arrive at a usable density for the degrees of freedom parameters for each country.

4 Concluding remarks
We have presented a fast and accurate mean field variational inference approximation to
the true posterior for Panel VAR models with exchangeable priors and Gaussian distur-
bances. Our results show that one can recover the correct dynamic properties in this
setup at greatly reduced computational cost, thus providing an attractive alternative to
numerically demanding MCMC methods. Furthermore, we show that the approximation
also accurately captures the uncertainty around the point estimates. This is important to
establish because a fast algorithm that significantly understates estimation uncertainty
would likely only be used for initial exploration exercises, followed by a standard Gibbs
sampling algorithm thereafter, limiting the scope of applicability. We then illustrated the
extension of the methodology to the case of t-distributed error terms, thus allowing the
researcher to use VI methods also for macroeconomic datasets that include, for instance,
the Covid-19 observations that can severely bias posterior estimates if not properly mod-
elled. The speed improvements make these methods well suited for applications such as
repeated forecasting exercises.
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Appendices

A Data
The dataset for the first application is taken from the replication files accompanying the
article by Jarociński (2010). The data used for the second application are listed in the
following table.

Table 1: Data for Euro Area application

Variable Series Key Transf. Public

GDP MNA.Q.Y.*.W2.S1.S1.B.B1GQ. Z. Z. Z.EUR.LR.N Index
and

log-level

Yes

Consumption MNA.Q.Y.*.W0.S1M.S1.D.P31. Z. Z. T.XDC.LR.N Index
and

log-level

Yes

CPI ICP.M.*.Y.000000.3.INX Index
and

log-level

No

ICP.M.DE.Y.000000.2.INX Index
and

log-level

No

Unemployment LFSI.Q.*.S.UNEHRT.TOTAL0.15 74.T Division
by 100

Yes

Short-term rate FM.Q.U2.EUR.RT.MM.EURIBOR3MD .HSTA Division
by 100

Yes

Stock prices FM.Q.*.EUR.DS.EI.TOTMK*.HSTA Index
and

log-level

No

FM.Q.DE.EUR.DS.EI.TOTMKBD.HSTA Index
and

log-level

No

Notes: Series keys from the ECB Statistical Data Warehouse. ∗ refers to the ISO3166 − 2
country codes. Monthly series are converted to quarterly frequency before transformations are
applied. Series key are slightly different for Germany in the case of CPI and Stock prices and
are listed separately.

ECB Working Paper Series No 2991 21



B Deriving the optimal approximating density
Here we derive the optimal approximating density and show how to obtain its constituent
parts mentioned in Section 2. Before stating the joint density over data and parameters,
we first state some rather cumbersome definitions. The common regressor matrix that
contains all right hand side variables for a given country is defined as Fc = [Xc, Zc].
Next, at country level, we define the combined parameter vector δc = [β′

c, γ
′
c]′. Further,

let the combined parameter vector be defined as δ = [β′
0, δ

′
1, . . . , δ

′
C ]′. Lastly, define the

selection matrix S0 such that β0 = S0δ and the selection matrices Sδc , Sβc and Sγc such
that δc = Sδcδ, βc = Sβcδ and γc = Sγcδ. Note that the elements in δc are not in the
correct order to correspond to the matrix Fc. Hence, we also introduce the permutation
matrix Pc that reorders the elements of δc to be compatible with Fc.

With these definitions the joint density function over data and parameters for the
model is (up to proportionality):

p(y, θ) ∝ λ−( s0
2 +1) exp

{
−ν0

2
1
λ

}
exp

{
−1

2(S0δ − µβ0)′V −1
β0 (S0δ − µβ0)

}
[

C∏
c=1

|Σc|−
T
2 |Ωc|−

N
2 exp

{
−1

2 (yc − (IN ⊗ Fc)PcSδcδ)
′
(
Σ−1

c ⊗ Ω−1
c

)
(yc − (IN ⊗ Fc)PcSδcδ)

}

λ− NK
2 exp

{
−1

2(Sβcδ − S0δ)′(λΛc)−1(Sβcδ − S0δ)
}

exp
{

−1
2(Sδcδ − µγc,0)′V −1

γc,0(Sδcδ − µγc,0)
}

|Σc|−
1
2 (dc,0+N+1) exp

{
−1

2 tr
{
Σ−1

c Rc,0
}}

T∏
t=1

ω
−( νc

2 +1)
c,t exp

{
−νc

2
1
ωc,t

}]
(B.1)

The first line contains the kernel of the Inverse-Gamma density for the overall tightness
parameter as well as the kernel of the normal distribution for the exchangeable mean.
The following lines are the product over the individual countries’ likelihood, the prior on
the VAR coefficients, and the prior on the error covariance matrix, and the prior on the
latent volatility factors, respectively.

To derive the optimal densities according to our assumed factorization in (15) we apply
the result in (14) to each factor and we will discuss them in turn. Note that it is sufficient
to consider only the terms that have a dependence on the parameter in question, and
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anything else can be relegated to a constant and thus ignored when deriving the optimal
densities.

B.1 Optimal density for δ

Taking logs of (B.1) and dropping terms that do not involve δ gives

ln (q⋆(δ)) ∝ −1
2

C∑
c=1

Eq(−δ)

[ 1
C

(S0δ − µβ0)′V −1
β0 (S0δ − µβ0)+

δ′(Sβc − S0)′(λΛc)−1(Sβc − S0)δ+

(Sγcδ − µγc,0)′V −1
γc,0(Sγcδ − µγc,0)+

(yc − (IN ⊗ Fc)PcSδcδ)
′
(
Σ−1

c ⊗ Ω−1
c

)
(yc − (IN ⊗ Fc)PcSδcδ)

]
(B.2)

where the expectation is taken over all parameters except δ. By assumption (14), we can
simply replace the inverses of λ, Σc and Ωc by the expectations over these quantities.
Also, define for convenience S = ∑C

c=1(Sβc − S0)′Λ−1
c (Sβc − S0). If we then expand and

group together terms, we find the following normal distribution as the optimal factor for
δ:

q⋆(δ) = N (µδ, Vδ) (B.3)

Vδ =
[
S ′

0V
−1

β0 S0 + µλ−1S +
C∑

c=1
S ′

γc,0V
−1

γc,0Sγc,0 +
C∑

c=1
S ′

δc
P ′

c

(
µΣ−1

c
⊗ F ′

cµΩ−1
c
Fc

)
PcSδc

]−1

(B.4)

µδ = Vδ

[
S ′

0V
−1

β0 µβ0 +
C∑

c=1
S ′

γc
V −1

γc,0µγc,0 +
C∑

c=1
S ′

δc
P ′

c

(
µΣ−1

c
⊗ F ′

cµΩ−1
c

)
yc

]
(B.5)

As noted in the main text, we use the insights in Lee and Wand (2016) to facilitate
the computation at this and the following step. The problem is that, generally, solving
for Vδ involves the inversion of a large matrix which is time consuming. They show that a
hierarchical model such as the one considered here has a structure that leads to the term in
square brackets being block diagonal. Importantly, they also recognize that only certain
parts of this inverse matrix are actually needed for the algorithm, so that the matrix
inversion can be broken down into several smaller blocks. For even more details we refer
to their expositions for even more details. Their algorithm also means that it makes sense
to compute the update for λ (next subsection) within the same updating function. This
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is because this update relies on Vδ and has to therefore be adjusted slightly.

B.2 Optimal density for λ

Moving on to the common scaling factor we again only retain terms that functionally
depend on λ, giving:

ln (q⋆(λ)) ∝ Eq(−λ)

[
−
(
s0 + CNK

2 + 1
)

ln(λ) − 1
2λ

−1 (ν0 + δ′Sδ)
]

(B.6)

Evaluating the expectation we find the following Inverse-Gamma distribution as the op-
timal factor for λ:

q⋆(λ) = IG
(
s̄

2 ,
ν̄

2

)
(B.7)

s̄ = s0 + CNK (B.8)

ν̄ = ν0 + µ′
δSµδ + tr (SVδ) (B.9)

from which we find that µλ−1 = s̄/ν̄.

B.3 Optimal density for Σc

For the optimal covariance matrix density we get

ln (q⋆(Σc)) ∝ Eq(−Σc)

[
−1

2(dc,0 + T +N + 1) ln (|Σc|) − 1
2 tr {Σ−1

c

(
Rc,0 + (Yc − FcGc)′ Ω−1

c (Yc − FcGc)
)
}
]

(B.10)

where Pcδc = vec(Gc). Again, after taking the expectation over everything inside the
trace operator we find that the optimal density for Σc is Inverse-Wishart

q⋆(Σc) = IW(dc,0 + T, S̄c) (B.11)

S̄c = Rc,0 + (Yc − FcµGc)
′ µΩ−1

c
(Yc − FcµGc) + ΩGc (B.12)

where the i, j element of ΩGc is given by Ω[i,j]
Gc

= tr
(
F ′

cµΩ−1
c
FcCov(Gc,i, Gc,j)

)
and Gc,i, Gc,j

denote the i-th and j-th column of Gc (see e.g. Hajargasht (2019)). This implies that
µΣ−1

c
= T S̄−1

c .
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B.4 Optimal density for ωc,t

For the optimal densities we note that as long as the latent volatility factors ωc,t are
assumed independent from the remaining parameters, the likelihood together with the
prior on ωc,t implies that the optimal density for q(ωc) factors into t independent terms
even if we did not initially assume this independence between the elements of ωc. Hence,
for each element we get

ln (q⋆(ωc,t)) ∝ Eq(−ωc,t)

[
−
(
νc +N

2 + 1
)

log(ωc,t) − ω−1
c,t

νc + u′
tΣ−1

c ut

2

]
(B.13)

Evaluating the expectation we have that the individual factors are Inverse-Gamma dis-
tributions:

q⋆(ωc,t) = IG
(
s̄ωc,t

2 ,
v̄ωc,t

2

)
(B.14)

s̄ωc,t = µνc +N (B.15)

v̄ωc,t = µνc + dc,t (B.16)

dc,t =
[
(Yc − FcµGc)µΣ−1

c
(Yc − FcµGc)′ + FcRcF

′
c

]
t,t

(B.17)

where again Pcδc = vec(Gc) and dc,t denotes the t-th diagonal element of the matrix
to its right. The entries of the matrix Rc are given by R[i,j]

c = tr(µΣ−1
c
Cov(G′

c,i, G
′
c,j))

and the covariance is taken over rows i and j of the matrix Gc. It then follows that
µω−1

c,t
= s̄ωc,t/v̄ωc,t and µlog(ωc,t) = log(v̄ωc,t/2) − ψ(s̄ωc,t/2). ψ(.) denotes the digamma

function.

B.5 Optimal density for νc

The optimal density for νc was derived in the main text as a Gamma distribution:

q⋆(ωc,t) = G (aν , bνc) (B.18)

aν = T/2 + 1 (B.19)

bνc = 2∑T
t=1

(
µlog(ωc,t) + µω−1

c,t

)
− T

(B.20)

which implies µνc = aνbνc .
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B.6 Maximizing the Evidence Lower Bounds (ELBO)

Our goal is to maximize L(q) which is achieved by the optimal densities (B.3), (B.7),
(B.11), (B.13), and (B.18). As these are coupled, we initialize µλ−1 = 104 and µΣ−1

c
= T ·IN

and µω−1
c,t

= 1, and then cycle through the moments above in turn.
To check convergence, we need the ELBO, which for this model is given by (up to

constant terms):

L(q) ∝ ln (|Vδ|) − s̄

2 ln(ν̄) −
C∑

c=1
T ln

(
|S̄c|

)
+

C∑
c=1

log(bνc) (B.21)

−
C∑

c=1

T∑
t=1

(
s̄ωc,t

2 µlog(ωc,t) + v̄ωc,t

2 µω−1
c,t

)

+
C∑

c=1

T∑
t=1

(
s̄ωc,t

2 + log(v̄ωc,t) + log(Γ(s̄ωc,t/2)) − (1 + s̄ωc,t/2)ψ(s̄ωc,t/2)
)

We stop the iterations once L(q)(n) − L(q)(n−1) <= 10−4. In the first application without
t-distributed errors, densities (B.13) and (B.18) are not considered and Ωc = IT . The
ELBO in this case consists of only the first three terms.

C Details on the Gibbs sampler
Deriving the conditional posterior distributions for the Gibbs sampler is straightforward.
Let θ =

{
β0, λ, {βc, γc,Σc,Ωc, νc}C

c=1

}
be the full set of parameters. Below we outline a

particular sequence of updating steps, although others are possible. In the following, we
denote by θ−x the parameter vector with element x taken out. To avoid cluttering the
notation we drop indices to denote the iteration number but keep in mind that any given
conditional distribution for a given parameter depends on the most recent values for the
other ones.

Using the joint density over parameters and data in (B.1) we have the following results.
The conditional posterior for β0 is:

p(β0|y, θ−β0) = N (µβ0 , Vβ0) (C.1)

Vβ0 = λ

(
C∑

c=1
Λ−1

c

)−1

(C.2)

µβ0 = Vβ0

1
λ

C∑
c=1

Λ−1
c βc (C.3)
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The conditional posterior for λ is:

p(λ|y, θ−λ) = IG
(
s̄

2 ,
ν̄

2

)
(C.4)

s̄ = s0 + CNK (C.5)

ν̄ = ν0 +
C∑

c=1
(βc − β0)′Λ−1

c (β − β0) (C.6)

The conditional posterior for βc is:

p(βc|y, θ−βc) = N (µβc , Vβc) (C.7)

Vβc =
[1
λ

Λ−1
c + Σ−1

c ⊗X ′
cΩ−1

c Xc

]−1
(C.8)

µβc = Vβc

[
λΛ−1

c β0 +
(
Σ−1

c ⊗X ′
cΩ−1

c

)
rc

]
(C.9)

rc = yc − (IN ⊗ Zc) γc (C.10)

The conditional posterior for γc is:

p(γc|y, θ−γc) = N (µγc , Vγc) (C.11)

Vγc =
[
Σ−1

c ⊗ Z ′
cΩ−1

c Zc

]−1
(C.12)

µγc = Vγc

(
Σ−1

c ⊗ Z ′
cΩ−1

c

)
rc (C.13)

rc = yc − (IN ⊗Xc) βc (C.14)

The conditional posterior for Σc is:

p(Σc|y, θ−Σc) = N (T, S̄) (C.15)

S̄ = (Yc −XcBc − ZcΓc)′Ω−1
c (Yc −XcBc − ZcΓc) (C.16)

The conditional posterior for Ωc breaks into independent parts for each element ωc,t

given by:

p(ωc,t|y, θ−ωc,t) = IG
(
νc +N

2 ,
νc + u′

tΣ−1
c ut

2

)
(C.17)
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The conditional posterior for νc is given by:

p(νc|y, θ−νc) ∝ Tνc

2 log(νc/2) − T log(Γ(νc/2)) − νc

2

T∑
t=1

(
log(ωc,t) + ω−1

c,t

)
(C.18)

which is not the kernel of a known distribution. Therefore, the independent-MH step as
explained in Chan and Hsiao (2014) is used to draw from this distribution. This amounts
to first calculating the first and second derivative of the above expression w.r.t. νc. Then,
the first-order condition is solved numerically to find the mode ν̂c of the distribution.
Next, the second derivative is evaluated at the mode and multiplied by -1 to obtain the
negative Hessian evaluated at the mode, denoted by K̂νc . Then, the proposal density is
specified as N (ν̂c, K̂

−1
νc

).
As above, for Application 1 the last two conditionals are ignored and Ωc = IT .

D Additional results
Here we provide supplementary figures to the results in the main text. Figure D.1 shows
accuracy measures for the second application from the main text. Figures D.2 - D.6 show
latent volatility estimates for each country individually for better visibility of the results.
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Figure D.1: Application 2 - accuracy measures for selected parameters.

Notes: Each boxplot summarizes the distribution of the accuracy measure across the parameters in the

respective group by country. For example, the boxplot for β1 summarizes the accuracy measures for coun-
try one’s VAR parameters subject to the exchangeable prior. The second panel show the corresponding
statistics for the diagonal elements of the error covariance matrices for each country.

ECB Working Paper Series No 2991 29



Figure D.2: Latent volatility for Germany - MCMC vs. VI

Notes: Latent volatility estimates for Germany. Blue shaded areas denote fancharts of the pointwise

MCMC posterior for √
ωc,t between the 5 and 95 percentiles, with steps of 5%, and the pointwise median

shown as solid black lines. Dashed red lines are the pointwise medians from VI, red solid lines the
corresponding 5% and 95% bands.
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Figure D.3: Latent volatility for France - MCMC vs. VI

Notes: Latent volatility estimates for France. Blue shaded areas denote fancharts of the pointwise MCMC

posterior for √
ωc,t between the 5% and 95% percentiles, with steps of 5%, and the pointwise median

shown as solid black lines. Dashed red lines are the pointwise medians from VI, red solid lines the
corresponding 5% and 95% bands.
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Figure D.4: Latent volatility for Italy - MCMC vs. VI

Notes: Latent volatility estimates for Italy. Blue shaded areas denote fancharts of the pointwise MCMC

posterior for √
ωc,t between the 5 and 95 percentiles, with steps of 5%, and the pointwise median shown

as solid black lines. Dashed red lines are the pointwise medians from VI, red solid lines the corresponding
5% and 95% bands.
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Figure D.5: Latent volatility for Spain - MCMC vs. VI

Notes: Latent volatility estimates for Spain. Blue shaded areas denote fancharts of the pointwise MCMC

posterior for √
ωc,t between the 5 and 95 percentiles, with steps of 5%, and the pointwise median shown

as solid black lines. Dashed red lines are the pointwise medians from VI, red solid lines the corresponding
5% and 95% bands.

ECB Working Paper Series No 2991 33



Figure D.6: Latent volatility for for Netherlands - MCMC vs. VI

Notes: Latent volatility estimates for the Netherlands. Blue shaded areas denote fancharts of the point-

wise MCMC posterior for √
ωc,t between the 5 and 95 percentiles, with steps of 5%, and the pointwise

median shown as solid black lines. Dashed red lines are the pointwise medians from VI, red solid lines
the corresponding 5% and 95% bands.
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