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Abstract

We develop a multisector, open economy, New Keynesian framework to evaluate how
potentially binding capacity constraints, and shocks to them, shape inflation. We show that
binding constraints for domestic and foreign producers shift domestic and import price Phillips
Curves up, similar to reduced-form markup shocks. Further, data on prices and quantities
together identify whether constraints bind due to increased demand or reductions in capacity.
Applying the model to interpret recent US data, we find that binding constraints explain half
of the increase in inflation during 2021-2022. In particular, tight capacity served to amplify
the impact of loose monetary policy in 2021, fueling the inflation takeoff.
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In the later half of 2021 and into 2022, the United States experienced a burst of inflation as
it emerged from the COVID-19 pandemic, led by a large increase in goods price inflation. Popu-
lar narratives suggest that strong consumer demand bumped up against constraints on the supply
of goods, fueling inflation [The Economist (2021)]. Further, in their public statements, policy-
makers frequently blamed disruptions in both domestic and foreign segments of supply chains for
restraining the supply of goods.1 Despite the plausibility of this narrative, it has been difficult to
evaluate the quantitative importance of supply chain constraints for inflation, not least because we
lack models that capture their impact.

In this paper, we investigate how potentially binding capacity constraints for domestic and for-
eign producers shape inflation in a multisector, open economy, New Keynesian (NK) model with
imported inputs and input-output linkages across sectors. Solving for the model’s non-linear equi-
librium dynamics via piecewise linear approximations, we develop a Bayesianmaximum likelihood
procedure to estimate key parameters and infer when constraints bind. We then apply the model to
quantify how constraints in the supply chain, and potential shocks to them, have influenced recent
data outcomes. We find that binding constraints account for about half (two percentage points) of
the increase in inflation during 2021-2022. Interestingly, no single set of shocks can explain the
inflation takeoff. Rather, shocks that tightened capacity set the stage for demand shocks – most
importantly, monetary policy shocks – to trigger binding constraints and accelerate inflation in
2021. Relaxation of the constraints, in part due to monetary tightening, then also explains the rapid
decline in goods price inflation in the latter half of 2022.

The framework we develop features occasionally binding constraints in two different places.
The first is a constraint that applies at the level of individual foreign firms, whereby foreign pro-
ducers are able to supply output at constant marginal costs up to a predetermined level, at which
point production is quantity-constrained. Motivated by evidence on disruptions in markets for im-
ported inputs, we devote particular attention to binding constraints on foreign input supply. The
second constraint is a similar limit on production capacity for domestic firms, which impacts both
downstream firms and consumers. These dual constraints allow us to separately capture the role of
domestic versus foreign supply chain disruptions on inflation.

Further, this framework features a distinction between supply-side versus demand-side explana-
tions for binding constraints, with potentially important implications for policy. On the supply side,
we assume the levels of the capacity constraints are exogenous and subject to stochastic shocks.2

1In International Monetary Fund (2021), Gita Gopinath writes: “Pandemic outbreaks in critical links of global
supply chains have resulted in longer-than-expected supply disruptions, further feeding inflation in many countries.”
Smialek and Nelson (2021) characterize the views of the US Federal Reserve chair with: “[Jerome Powell] noted that
while demand was strong in the United States, factory shutdowns and shipping problems were holding back supply,
weighing on the economy and pushing inflation above the Fed’s goal.” See Lane (2022) for a discussion of views at
the European Central Bank, and Goodman (2021) for a narrative of supply chain breakdowns.

2One source of these shocks would be pandemic-related factory shutdowns, as occurred in the US, China, Vietnam
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On the demand side, an increase in demand may also exhaust excess capacity and induce capacity
constraints to bind. This mechanism is salient, because the abrupt recovery of demand in 2021
seemed to stress existing supply chain capacity. Separating these two mechanisms – that binding
constraints may be the result of strong demand, or disruptions to capacity – represents a key quan-
titative challenge. Breaking the challenge into two pieces, we must ascertain whether constraints
bind, while also identifying why they bind.

To shed light on how binding constraints may be detected, we note that binding constraints
impact pricing decisions. In the model, constraints are internalized by each firm as it sets its price,
such that the firm’s optimal markup differs depending on whether the constraint is binding. Assum-
ing that both exports and imports are invoiced in US Dollars, and prices are subject to adjustment
frictions, then domestic and import price inflation satisfy Phillips Curve type relationships. When
the domestic constraint binds, we show that there is an additional term in sector-level, domestic
price Phillips Curves that resembles a markup (equivalently, cost-push) shock. Similarly, there is a
quasi-markup shock in the import price Phillips Curve when the import constraint binds. Thus, our
framework provides a structural interpretation for reduced-form markup/cost-push shocks, based
on binding constraints.

This “markup shock” interpretation of the role of binding constrains dovetails well with related
work by Bernanke and Blanchard (2023), which uses an empirical model to argue that product
market shocks (which raise prices given wages) explain a large share of recent US inflation. Im-
portantly, our work investigates the structural origins of these empirically plausible shocks.3 The
markup shock interpretation also highlights the contrast between binding constraints and other com-
peting mechanisms that work through marginal costs, such as factor reallocation frictions or labor
shortages. Finally, the markup shock interpretation is also prima facie consistent with the fact that
US profit margins increased as inflation took off in 2021.

Turning to the second challenge, data on quantities and prices together serve to identify the rea-
sons why constraints bind – i.e., to disentangle whether demand shocks or supply-side constraint
shocks lead constraints to bind. While either a positive demand shock or negative constraint shock
may trigger binding constraints and thus lead inflation to rise, these shocks have distinct implica-
tions for quantities. A demand shock pushes both inflation and output quantity up, while a negative
constraint shock raises inflation whilst lowering output. Put differently, adverse constraint shocks
lead to negative comovement between inflation and quantities (of output or imports). In contrast,

and elsewhere. They also capture shortages of inputs due other disruptions to global supply relationships (e.g., cancel-
lation of supply contracts early in the pandemic led to shortages of foreign-supplied semiconductors that curtailed US
auto production). Other historical shocks, such as the 2011 Tōhoku earthquake/tsunami, are also plausibly thought of
as capacity shocks.

3In a blog post, Del Negro et al. (2022) also argue that markup shocks are important, based on analyzing US data
through the lens of a closed economy model without capacity constraints (the NYFed model).
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there is positive comovement in these variables following a goods-biased demand shock. Implic-
itly, we use these quantitative patterns to identify shocks when applying the model to filter data.

To lay out the structure of the paper, we start by collecting stylized facts in Section 1, which
both motivate elements of the framework and serve as inputs into quantification. Some are well
known: headline consumer price inflation rose a lot, more for goods than services. And consumer
expenditure shifted from services to goods, driving real goods expenditures above trend. On the
import side, prices for imported industrial materials (inputs) rose rapidly in 2021, while prices
for imported consumer goods were essentially flat. As for quantities, production of goods has
recovered from its temporary pandemic downturn, but it has not increased in response to the surge in
consumer demand for goods. Stagnant domestic production in the face of surging demand (and the
corresponding lack of imported inputs) hints at potentially binding constraints, whether domestic
or foreign in nature.

In Section 2, we develop a model to organize our interpretation of these facts, in which we
study the impact of constraints for domestic goods producers and foreign goods input suppliers. In
Section 3, we then apply the model to filter shocks from US national accounts data. To capture
the rich data dynamics, we allow for a number of different shocks, including shocks to aggregate
demand (time preference), demand for goods (preferences for goods versus services), monetary
policy, capacity levels at home and abroad, sector-specific productivity, and foreign production
costs. In an extended version of the model, we also allow for labor supply shocks (disutility of
labor) and stochastic constraints on labor supply.

As a key intermediate step, we develop a Bayesian Maximum Likelihood estimation proce-
dure to infer when constraints are binding and estimate structural parameters.4 Our model presents
several challenges for estimation. One challenge is that it features capacity shocks, and capac-
ity is a latent variable that has no first order impact on other potentially observable equilibrium
variables when constraints are slack. As a result, prior estimation routines (e.g., Guerrieri and Ia-
coviello (2017)) that use inversion filters to construct the likelihood function are not applicable in
our context. Instead, our estimation procedure builds on prior work by Kulish et al. (2017), Kulish
and Pagan (2017), and Jones et al. (2022a), which treats the duration of binding constraints as a
parameter to be estimated. In this, a second challenge is that the duration of binding constraints
is an equilibrium outcome in our model, unlike prior applications of the duration-based estima-
tion approach. Therefore, we adapt the maximum likelihood procedure to impose constraints on
admissible duration parameter draws.5

4The structural parameters we estimate are substitution elasticities between home and foreign inputs, coefficients
in the monetary policy rule, the mean level of capacity, and the stochastic processes for shocks.

5In Kulish et al. (2017) and Jones et al. (2022a), the binding constraint is the zero lower bound on interest rates, so
the duration to be estimated reflects beliefs about how long the central bank will hold the interest rate at zero. Because
this is a free policy variable, these papers treat durations as unconstrained in the estimation. In our application, the
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Overall, our estimated model fits the data well; most importantly, it captures the evolution of
inflation for goods, services, and imports during the post-2020 period, making it a useful laboratory
for analysis. Further, smoothed values for multipliers on the constraints imply that constraints bind
during most of 2021-2022, and how tight they are fluctuates over time.

With the model and estimates in hand, we evaluate the role of binding constraints in explaining
the evolution of inflation through a sequence of counterfactual exercises. The first counterfac-
tual allows all shocks to be active, but exogenously relaxes the capacity constraints in all periods.
Comparing this counterfactual to the data, we find that binding constraints explain about half of
the increase in inflation in 2021-2022, about two percentage points of the four percentage point
increase in overall inflation. Further, easing of constraints in the latter half of 2022 helps explain
recent declines in goods and import price inflation.

To evaluate the role of individual shocks, we run a series of counterfactuals in which we intro-
duce shocks one at a time and in combination. We find that tight capacity, in part due to negative
capacity shocks, set the stage for monetary policy shocks – looser policy than suggested by an ex-
tended Taylor rule – to ignite inflation in 2021. By implication, neither aggregate nor goods-biased
consumer demand shocks play an important role in 2021, though they do account for inflation dy-
namics in 2020.6 As monetary policy was tightened in 2022, demand shocks then play a larger role
in accounting for sustained inflation.

Probing the robustness of these results, we show that these results are not spuriously driven
by fluctuations in energy prices, by re-estimating and simulating the model using inflation data
that excludes energy. We also investigate how our mechanism compares to a leading alternative –
labor market shocks – in accounting for inflation. Specifically, we enrich the labor market to allow
for wage rigidity, labor supply shocks, and (novel) potentially binding constraints on labor supply.
While these additional features help us account for labor market dynamics (labor quantities and
real wages) and the absence of disinflation in 2020, binding capacity constraints continue to play
an important role in explaining inflation dynamics in 2021-2022.

In addition to work cited above, our paper is related to two distinct strands of work. First, our
approach to modeling capacity constraints is related to models developed in Álvarez-Lois (2006)
and Boehm and Pandalai-Nayar (2022), which feature heterogeneous firms that differ in terms of
their exogenous capacity constraints on output.7 As Boehm and Pandalai-Nayar emphasize, ag-
gregating across heterogeneous firms yields smooth, convex industry supply curves. We instead

anticipated duration of binding capacity constraints is determined by the realized shock today and the state of the
economy. Thus, we adapt the estimation procedure to this new environment.

6Fiscal policy (changes in taxes and transfers) supported consumption during the pandemic. Thus, the consumption
demand shocks that we recover from data partly capture the impact of these fiscal policies.

7Fagnart et al. (1999) studies the endogenous determination of capacity constraints on output, in a putty-clay model
where firms pre-commit to “blueprint” technologies that constraint their ability to expand output.
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employ a homogeneous firms framework, which allows for binding aggregate constraints that yield
kinked, convex supply curves. One pedagogical advantage to our approach is that our model is eas-
ily comparable to standard log-linear New Keynesian models. Further, it features state-dependent
responses to shocks, which fit well into the empirical literature. A second is that we can use piece-
wise linear solution techniques to capture non-linearities, which in turn enables us to employ “fast”
filtering and estimation routines, which exploit the Kalman Filter.

Second, our paper is related to recent work on how global value chains transmitted shocks
during the pandemic crisis.8 Several contributions specifically study the role of supply chain dis-
ruptions in explaining price changes during the pandemic period. For the United States, Amiti et al.
(2021) and Santacreu and LaBelle (2022) find that output price changes across industries are related
to their exposure to input price shocks and/or supply chain disruptions. Relatedly, Benigno et al.
(2022) develop an index of global supply chain pressures, and they find it has predictive power for
inflation in a local projections empirical framework. Focusing disruptions in the shipping sector
(e.g., port blockages), Bai et al. (2023) and Finck and Tillmann (2023) also find that disruptions
raise inflation in vector auto-regressive models. di Giovanni et al. (2022) examine the role of labor
shortages and supply chain disruptions on inflation during the pandemic, building on the multi-
sector framework by Baqaee and Fahri (2022). Amiti et al. (2023) study how the combination of
domestic labor market shocks and import disruptions contribute to inflation across sectors. Addi-
tional contributions focus on the impacts of fiscal policy on inflation, including di Giovanni et al.
(2023), de Soyres et al. (2023), and Bianchi et al. (2023).9

Relative to this literature, our paper is the first (to our knowledge) to analyze occasionally
binding capacity constraints in the supply chain, within a complete DSGE model. In this, our
paper extends the new literature on monetary policy in economies with production networks [e.g.,
La’o and Tahbaz-Salehi (2022); Rubbo (2023)] to accommodate supply chain constraints. Thus,
we believe it opens the door to further study of the implications of supply chain bottlenecks for the
conduct of policy.

1 Collecting Facts

We begin by collecting several key facts about recent inflation, consumer expenditure, production,
and imports that motivate various elements of the framework we construct. The first facts about
consumer price inflation are well known: consumer price inflation rose substantially in 2021, led by

8See Bonadio et al. (2021), Gourinchas et al. (2021), Celasun et al. (2022), Lafrogne-Joussier et al. (2023), and
Alessandria et al. (2023). Taking a longer view, Comin and Johnson (2020) study how rising trade impacted US
inflation over the past several decades.

9In contrast to Bianchi et al. (2023), who emphasizes the fiscal theory of the price level, we study a standard New
Keynesian environment with monetary dominance.
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Figure 1: Consumer and Import Price Inflation
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(b) Import Price Inflation by End Use
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Note: Consumer price indexes are from the USBureau of Economic Analysis, corresponding to the Personal Consump-
tion Expenditure (PCE) price index and components (series identifiers: DPCERGM, DGDSRGM, and DSERRGM).
Import price indexes are obtained from the US Bureau of Labor Statistics (series identifiers: IR for total imports,
EIUIR1 for industrial materials, EUIIR1EXFUEL for industrial materials excluding fuels, and EIUIR4 for consumer
goods).

inflation for goods. In Figure 1, we plot year-on-year growth in the price deflator for US personal
consumption expenditure (PCE), as well as separate series for goods and services. The rise in
headline inflation – from roughly 2 percent in 2021 to 7 percent as of early 2022 – is obviously
startling. Importantly, this rise in inflation was led by goods price inflation, which rose from near
zero to 10 percent in 2021 and then plummeted in the second half of 2022.

A second set of facts concerns import price inflation: prices for imported inputs rose dramat-
ically in 2021, while price changes for imported consumer goods were modest. Plotting import
price inflation by end use in Figure 1b, we see that inflation for imported industrial materials rose
substantially in 2021, peaking at 50% year on year.10 While the price of oil and derivative fuels
doubled during this period, the price of industrial materials excluding fuels also rose over 30%
in 2021. In contrast, inflation for imported consumer goods was subdued. This large difference
between import price inflation for inputs versus consumer goods motivates our ensuing focus on
disruptions impacting markets for imported inputs, rather than consumer goods.11 In 2022, im-

10This data is from the International Price Program of the Bureau of Labor Statistics. The source data consist
primarily of free on board (FOB) prices (i.e., prices received by foreign producers at foreign dock). During 2021-
2022, transport costs also increased dramatically, which then would be added to these FOB prices to arrive at CIF
prices (inclusive of cost, insurance, and freight) paid by the importer. We abstract from these additional transport
margins, in order to focus on changes in supply prices.

11We have omitted several categories of imports from the figure for clarity, including capital goods imports (IR2),
imports of automotive vehicles, parts, and engines (IR3), and foods, feeds, and beverages (IR0). To verbally sum-
marize, inflation for capital goods imports was generally low, similar to imported consumer goods. Inflation for the
automotive sector was also very low, and inflation for foods tracked total import price inflation closely. Thus, the
behavior of imported materials prices stands out.
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Figure 2: Consumption by Sector

(a) Sector Shares in Expenditure
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(b) Real Quantities Consumed by Sector
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Note: Personal Consumption Expenditure shares and real quantity indexes by sector are obtained from the US Bureau
of Economic Analysis (series identifiers: DPCERC, PCES, DGDSRA3, and DSERRA3).

ported input price inflation dissipates rapidly, even excluding volatile fuels prices.
Tying the first and second set of facts together, goods production relies heavily on imported

materials, relative production of services. Thus, the large increase in imported materials prices
may play a role in explaining the surge of inflation in the goods sector discussed above. Our model
framework will include this potential mechanism, alongside other competing drivers of inflation.

The third set of facts relate to consumer expenditures. While consumer expenditure collapsed
during the lockdown phase of the pandemic, it returned to trend by the end of 2021. At the same
time, the sector composition of consumer expenditures changed dramatically, as consumers reallo-
cated away from services toward goods. This is illustrated in terms of nominal expenditure shares
in Figure 2a, and in terms of real quantities consumed for goods and services in Figure 2b. Further,
note that the change in composition has proven remarkably persistent: real consumption of goods
(correspondingly, the goods share in expenditure) remains high relative to pre-pandemic levels
through 2023.

The final set of facts point to potential supply-side constraints. In Figure 3a, we plot real US
gross output by broad sector. The key fact is that real production of goods (already stagnant before
the pandemic) only just recovered and then trended slightly down in 2021-2022, which contrasts
sharply with services output. Stagnant goods production in the face of high domestic demand for
goods immediately suggests that US producers may have faced binding constraints. Correspond-
ingly, consumer demand for goods was filled by imports: in Figure 3b, imported quantities for
consumer goods (excluding autos) surge. In contrast, imports of industrial materials are flat, re-
covering only to its 2017 levels by the end of 2021 and plateauing there.

Deficient US goods production and stagnant imports of industrial materials are naturally con-
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Figure 3: Production and Import Quantities

(a) Real Gross Output by Sector
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nected, though the direction of causality is not immediately clear. Limited supplies of imported ma-
terials may have constrained domestic production, or distinct binding constraints of domestic origin
may have curtailed production and indirectly depressed demand for imported inputs. Quantity and
price data together will distinguish between binding domestic versus foreign supply constraints in
our model. With this background in mind, we turn to details of the model.

2 Model

This section presents a small open economy model with many sectors, s ∈ {1, . . . , S}, which are
connected through input-output linkages. Within each sector, there is a continuum of monopolisti-
cally competitive firms, who set prices subject to Rotemberg-type adjustment costs. As in Gopinath
et al. (2020), we assume that both exports and imports for the Home country are denominated in
Home currency (i.e., US Dollars). Motivated by the data, we also allow import prices to differ for
final goods and inputs.

The principal new features of the model are the output capacity constraints, for foreign and do-
mestic firms. In writing down the model here, we allow these constraints to be potentially binding
in any domestic sector, and we distinguish constraints that apply to foreign final versus input pro-
ducing firms. Looking forward, we then restrict attention to particular constraints in quantitative
analysis of the model for reasons of both tractability and empirical relevance. We also assume that
the constraints are exogenously determined and (potentially) time varying, subject to stochastic
shocks. This sets up a framework in which constraints may bind either due to negative shocks to
capacity, or because other shocks lead firms to exhaust their excess capacity.
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2.1 Consumers

There is a representative Home consumer, with preferences over labor supply Lt and consumption
of sector composite goods {Ct(s)}s∈S represented by:

U ({Ct, Lt}∞t=0) = E0

∞∑
t=0

βtΘt

[
C1−ρ
t

1− ρ
− L1+ψ

t

1 + ψ

]
(1)

with Ct =

(∑
s

ζt(s)
1/ϑCt(s)

(ϑ−1)/ϑ

)ϑ/(ϑ−1)

. (2)

The parameter β < 1 is the usual time discount rate, ρ ≥ 0 controls intertemporal substitution,
ψ > 0 governs the elasticity of labor supply, and ϑ ≥ 0 is the elasticity of substitution across
sectors. The parameter Θt is an aggregate preference (discount rate) shock at date t. The sectoral
composite good Ct(s) is comprised of domestic (CHt(s)) and foreign (CFt(s)) composite goods:

Ct(s) =

(∑
s

γ(s)1/ϵ(s)CHt(s)
(ϵ(s)−1)/ϵ(s)+(1−γ(s))1/ϵ(s)CFt(s)

(ϵ(s)−1)/ϵ(s)

)ϵ(s)/(ϵ(s)−1)
, (3)

where ϵ(s) ≥ 0 is the elasticity of substitution between home and foreign composites. The param-
eter ζt(s) is a time-varying parameter that controls tastes for goods from sector s, and we require
that

∑
s ζt(s) = 1, so ζt(s) should be interpreted as a relative sectoral demand shock.

Financial markets are complete, and the agent’s budget constraint is given by:

PtCt + Et [St,t+1Bt+1] ≤ Bt +WtLt, (4)

where PtCt =
∑

s Pt(s)Ct(s), Pt is the price for one unit of the composite consumption good,
Pt(s) is the price of the sector composite good, and Wt is the wage.12 Bt denotes the portfo-
lio of Arrow-Debreu securities that pay off in domestic currency, and St,t+1 is the Home con-
sumer’s stochastic discount factor. Further, sectoral consumption expenditure is Pt(s)Ct(s) =

PHt(s)CHt(s) + PFt(s)CFt(s), where PHt(s) and PFt(s) are the prices of the home and foreign
consumption composites.

Given prices and initial asset holdings B0, the consumer chooses consumption, labor supply,
and asset holdings to maximize Equation 1 subject to Equation 4 and the standard transversality
condition.

12The price indexes are given by Pt =
(∑

s ζt(s)Pt(s)
1−ϑ
)1/(1−ϑ) and Pt(s) =(

γ(s) (PHt(s))
1−ϵ(s)

+ (1− γ(s)) (PFt(s))
1−ϵ(s)

)1/(1−ϵ(s))

.
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2.2 Domestic Producers

There is a continuum of firms within each sector in Home, each of which produces a differentiated
good (indexed by ω). There also are competitive intermediary firms that aggregate varieties into
composite goods, which are consumed, used as inputs, and exported.

2.2.1 Composite Domestic Good

Each competitive intermediary firm purchases output from domestic producers to form a domestic

composite, using the production function Yt(s) =
(∫ 1

0
Yt(s, ω)

(ε−1)/εdω
)ε/(ε−1)

, where Yt(s, ω)
is the amount of output purchased from firm ω in sector s, and ε > 1 is the elasticity of sub-
stitution. Given prices Pt(s, ω) for individual domestic varieties, cost minimization yields de-
mands Yt(s, ω) =

(
Pt(s,ω)
PHt(s)

)−ε
Yt(s), where the price of the sector composite good is PHt(s) =[∫ 1

0
Pt(s, ω)

1−εdω
]1/(1−ε)

.

2.2.2 Domestic Firms

Each domestic producer in sector s is able to supply output up to a pre-determined capacity of Ȳt(s),
which we refer to as a firm-level capacity constraint. We assume this capacity level is exogenously
determined and equal across firms within each sector.

The production function for domestic variety ω in sector s is:

Yt(s, ω) = Zt(s, ω)A(s) (Lt(s, ω))
1−α(s) (Mt(s, ω))

α(s) (5)

with Mt(s, ω) =

∑
s
′

(
α(s

′
, s)/α(s)

)1/κ
Mt(s

′
, s, ω)(κ−1)/κ

κ/(κ−1)

,

Mt(s
′
, s, ω)=

[
ξ(s

′
, s)

1

η(s
′
)MHt(s

′
, s, ω)

η(s
′
)−1

η(s
′
) +(1−ξ(s′ , s))

1

η(s
′
)MFt(s

′
, s, ω)

η(s
′
)−1

η(s
′
)

] η(s
′
)

η(s
′
)−1

,

where Lt(s, ω) is the quantity of labor used by the firm,Mt(s, ω) is the firm’s use of a composite
input, Zt(s, ω) is productivity, and A(s) = α(s)−α(s)(1 − α(s))−(1−α(s)) is a normalization con-
stant. The composite input combines inputs purchased from upstream sectors Mt(s

′
, s, ω), with

elasticity of substitution κ ≥ 0. And those upstream inputs are themselves a CES composite of
Home (MHt(s

′
, s, ω)) and Foreign (MFt(s

′
, s, ω)) composite inputs. The parameters η(s) ≥ 0 are

elasticities of substitution across country sources for inputs (conventionally termed the Armington
elasticity), while ξ(s′ , s) ∈ (0, 1) controls relative demand for home inputs conditional on prices.

Producers set prices in domestic currency under monopolistic competition, and they select the
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input mix to satisfy the implied demand. As is standard, these two problems can be analyzed sepa-
rately. The firm chooses

{
Lt(s, ω),Mt(s, ω),Mt(s

′
, s, ω),MHt(s, ω),MFt(s

′, s, ω)
}
to minimize

its cost of production.13 Given its marginal costs, the domestic firm chooses a sequence of prices
to maximize profits, with knowledge of the demand curve for its output, and subject to quadratic
adjustment cost for prices [Rotemberg (1982)]. The pricing problem is:

max
{Pt(s,ω)}

E0

∞∑
t=0

S0,t

Pt
[Pt(s, ω)Yt(s, ω)−MCt(s, ω)Yt(s, ω)− Φt(s, ω)]

s.t. Yt(s, ω) ≤ Ȳt(s),

where Φt(s, ω) ≡ ϕ(s)
2

(
Pt(s,ω)
Pt−1(s,ω)

− 1
)2
PHt(s)Yt(s) captures adjustment costs, ϕ(s) governs the

degree of price rigidity, and the discount rate for profits reflects the domestic agent’s stochastic
discounting.14

The firm accounts for the potentially binding constraint in its pricing decisions. Denoting the
Lagrange multiplier attached to the capacity constraint µt(s, ω), optimal prices satisfy:

0 = 1− ϵ
(
1− MCt(s,ω)+µt(s,ω)

Pt(s,ω)

)
− ϕ(s)

(
Pt(s,ω)
Pt−1(s,ω)

− 1
)

PHt(s)Yt(s)
Pt−1(s,ω)Yt(s,ω)

+Et
[
St,t+1

Pt
Pt+1

ϕ(s)
(
Pt+1(s,ω)
Pt(s,ω)

−1
)
PHt+1(s)Yt+1(s)

Pt(s,ω)Yt(s,ω)
Pt+1(s,ω)
Pt(s,ω)

]
. (6)

The corresponding complementary slackness condition is:

µt(s, ω)
[
Yt(s, ω)− Ȳt(s)

]
= 0. (7)

And we require µt(s, ω) ≥ 0 and the constraint to hold in equilibrium (Yt(s, ω) ≤ Ȳt(s)) as usual.
When the constraint binds, then µt(s, ω) > 0. In Equation 6, we see this is equivalent to an increase
in the marginal cost of the firm, which drives up the optimal price. When the capacity constraint is
slack, such that µt(s, ω) = 0, and expected to remain slack, then Equation 6 collapses to a standard
intertemporal pricing equation.

2.3 Foreign Producers

Turning to foreign producers, we distinguish between producers of foreign consumption goods
versus inputs, which allows us to to analyze data on import prices by end use.

13The cost of production isWtLt(s, ω)+PMt(s)Mt(s, ω), with PMt(s)Mt(s, ω) =
∑

s′ Pt(s
′, s)Mt(s

′
, s, ω) and

Pt(s
′, s)Mt(s

′
, s, ω) = Pt(s

′)MHt(s
′, s, ω) +PFt(s

′)MFt(s
′, s, ω), where PFt(s

′) is the (domestic currency) price
of the foreign composite input from sector s′ .

14Of course, with complete markets, it is immaterial whether domestic or foreign agents own the firm.
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2.3.1 Composite Foreign Goods

For each end use u ∈ {C,M}, where C andM denote consumption and intermediate use respec-
tively, there is a unit continuum of foreign firms that produce foreign inputs, indexed byϖ. A com-
petitive intermediary firm aggregates output produced by each foreign firm, and bundles it into the

foreign composite according to the production function: Y ∗
ut(s) =

(∫ 1

0
Y ∗
ut(s,ϖ)(ε−1)/εdϖ

)ε/(ε−1)

.

Demand for each variety then takes the standard CES form: Y ∗
ut(s,ϖ) =

(
PuFt(s,ϖ)
PuFt(s)

)−ε
Y ∗
ut(s),

where PuFt(s,ϖ) is the price of variety ϖ and PuFt(s) =
(∫ 1

0
PuFt(s,ϖ)1−εdϖ

)1/(1−ε)
is the

price of the foreign composite, both denominated in Home currency.

2.3.2 Foreign Firms

Each foreign firm (in sector s, producing for end use u) is able to supply output up to a pre-
determined capacity of Ȳ ∗

ut(s), and this capacity is exogenous and equal across firms. Foreign
marginal costs are given byMC∗(s,ϖ), and we assume this cost is exogenous (as in a small open
economy), denominated in foreign currency, and equal across end uses.

Each firm chooses a sequence for the price of its variety inHome currency {PuFt(s,ϖ)}, subject
to price adjustment frictions, to solve:

max
{PFt(s,ϖ)}

E0

∞∑
t=0

S∗
0,t

P ∗
t Et

[PuFt(s,ϖ)Y ∗
ut(s,ϖ)− EtMC∗

t (s)Y
∗
ut(s,ϖ)− Φt(s,ϖ)]

s.t. Y ∗
ut(s,ϖ) ≤ Ȳ ∗

ut(s),

withΦ∗
t (s,ϖ) ≡ ϕ(s)

2

(
PuFt(s,ϖ)
PuFt−1(s,ϖ)

− 1
)2
PuFt(s)Y

∗
ut(s)with knowledge of the demand curve for its

output specified above. Here S∗
0,t is the foreign stochastic discount factor, P ∗

t is the foreign price
level (in foreign currency), and Et is a the nominal exchange rate (units of home currency to buy
one unit of foreign currency).

Denoting the Lagrange multiplier attached to the capacity constraint µ∗
ut(s,ϖ), then the first

order condition is:

1− ε

(
1− Et (MC∗

t (s,ϖ) + µ∗
ut(s,ϖ))

PuFt(s,ϖ)

)
− ϕ(s)

(
PuFt(s,ϖ)

PuFt−1(s,ϖ)
− 1

)
PuFt(s)Y

∗
ut(s)

PuFt−1(s,ϖ)Y ∗
ut(s,ϖ)

+ Et

[
S∗
t,t+1

(
EtP

∗
t

Et+1P ∗
t+1

)
ϕ(s)

(
PuFt+1(s,ϖ)

PuFt(s,ϖ)
− 1

)
PuFt+1(s)Y

∗
ut+1(s)

PuFt(s,ϖ)Y ∗
ut(s,ϖ)

PuFt+1(s,ϖ)

PuFt(s,ϖ)

]
= 0. (8)

The complementary slackness condition is:

µ∗
ut(s,ϖ)

[
Y ∗
ut(ϖ)− Ȳ ∗

ut

]
= 0. (9)

12



In equilibrium, µ∗
ut(ϖ) ≥ 0 and Y ∗

ut(ϖ) ≤ Ȳ ∗
ut.

2.4 Closing the Model and Equilibrium

We assume that demand for exports of the home composite good takes the CES form:

Xt(s) =

(
PHt(s)

PtQt

)−σ(s)

X∗
t (s), (10)

where Qt ≡ EtP ∗
t

Pt
is the real exchange rate and X∗

t (s) is an exogenous export demand factor.
The market clearing condition for the home composite good is:

Yt(s) = CHt(s) +

S∑
s′=1

∫ 1

0
MHt(s, s

′, ω)dω +Xt(s) +

∫ 1

0

[
ϕ(s)

2

(
Pt(s, ω)

Pt−1(s, ω)
− 1

)2

Yt(s)

]
dω, (11)

where the composite good is sold to consumers and domestic producers, exported, and used to
cover price adjustment costs. For the foreign composite goods, we impose similar market clearing
conditions:

Y ∗
Ct(s) = CFt(s) +

∫ 1

0

[
ϕ(s)

2

(
PCFt(s,ϖ)

PCFt−1(s,ϖ)
− 1

)2

Y ∗
Ct(s)

]
dϖ (12)

Y ∗
Mt(s) =

∑
s′

MFt(s, s
′) +

∫ 1

0

[
ϕ(s)

2

(
PMFt(s,ϖ)

PMFt−1(s,ϖ)
− 1

)2

Y ∗
Mt(s)

]
dϖ. (13)

Labor market clearing is given by:

Lt =
S∑
s=1

Lt(s) with Lt(s) =

∫ 1

0

Lt(s, ω)dω. (14)

Trade in Arrow-Debreu securities implies that Home and Foreign consumers share risk, such that:

Θt

(
Ct
C∗
t

)−ρ

Qt = Ξ, (15)

where Ξ is a constant.
Turning to monetary policy, we specify an extended inflation-targeting rule for interest rates.

Since we allow for sector-specific preference shocks, we now distinguish measured price inflation
from changes in the welfare-theoretic price index. We define an auxiliary price index under the as-

sumption that preferences are constant over time: P̄t =
(∑

s ζ0(s) (Pt(s))
1−ϑ
)1/(1−ϑ)

, where ζ0(s)
are steady-state CES weights. Then Π̄t = P̄t/P̄t−1 is the ratio of measured prices across periods,
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and the approximate inflation rate is given by π̄t =
∑

s

(
P0(s)C0(s)
P0C0

)
[lnPt(s)− lnPt−1(s)].15 We

write the monetary policy rule in terms of measured inflation:

1 + it = (1 + it−1)
ϱiΠ̄

ω(1−ϱi)
t (Yt/Y0)

(1−ϱi)ϱy Ψt, (16)

where Yt =
∑

s P0(s)Yt(s) is aggregate real gross output and Ψt is a monetary policy shock. The
parameters ω and ϱy determine how aggressively the central bank responds to inflation and the
output gap (defined as the deviation of output from steady state), while the parameter ϱi controls
the degree of interest rate inertia.

We focus on an equilibrium with symmetric producers within each sector and country. Given
parameters and exogenous variables, an equilibrium is a sequence of quantities and prices that
satisfy the model’s equilibrium conditions in Table 1 of the Appendix.

2.5 Discussion

We briefly discuss some technicalities associated with solving the model. We then describe Phillips
Curves, which contain important insights for interpreting simulation results.

2.5.1 Solving the Model

Because the model features occasionally binding constraints, we need to adopt an appropriate
solution technique that captures the non-linearities induced by them. Among alternatives, we
adopt the piecewise linear solution technique developed by Guerrieri and Iacoviello (2015). The
perturbation-based solution algorithm combines first order approximations to the model equilib-
rium for both the unconstrained and constrained equilibria, where the point of approximation is
the unconstrained equilibrium in all cases.16 The log-linear approximation for the model used in
our quantitative analysis, and details regarding the solution procedure, are presented in the Online
Appendix.

Collecting log deviations from steady state for endogenous (both control and state) variables in
15The following relationship holds between the ratios of measured and welfare-based price indexes across periods:

Π̄t =
P̄t/Pt

P̄t−1/Pt−1
Πt, where P̄t

Pt
=

(∑
s ζ0(s)

(
Pt(s)
Pt

)1−ϑ
)1/(1−ϑ)

and the ratio of aggregate prices across periods is

Πt ≡ Pt

Pt−1
. We include these among auxiliary price definitions in the model equilibrium.

16The solution procedures requires that the model satisfies two important conditions. First, it is assumed that the
model returns to the unconstrained equilibrium in finite time after a once-off shock, if agents expect future shocks to
be zero. Second, the unconstrained equilibrium must be stable, in the usual Blanchard-Kahn sense. Both requirements
are satisfied for our baseline model and parameter values.
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the vector Xt, the general solution for the model can be written as:

Xt = J (Xt−1, εt; θ) +Q (Xt−1, εt; θ)Xt−1 +G (Xt−1, εt; θ) εt, (17)

where εt is the vector of exogenous shocks in period t, θ is a collection of structural parameters,
and J(·),Q(·), andG (·) are time-varying matrices (dependent on the state and current shocks) that
describe the optimal policy function.

2.5.2 Domestic and Import Price Phillips Curves

It is instructive to examine log-linear approximations for the dynamic pricing equations for do-
mestic and imported goods. Noting that µt(s)/Pt and µ∗

ut(s)/P
∗
t for u ∈ {C,M} take on zero

values in the unconstrained equilibrium, we define auxiliary variables µ̃t(s) ≡ µt(s)/Pt + 1 and
µ̃∗
ut(s) ≡ µ∗

ut(s)/P
∗
t + 1, and then we log-linearize the equilibrium with respect to these auxiliary

variables. The resulting approximate pricing equations are:

πHt(s) =
(
ε−1
ϕ(s)

)
(r̂mct(s)− r̂pHt(s)) +

(
ε

ϕ(s)
P0

PH0(s)

)
ˆ̃µt(s) + βEt [πHt+1(s)] (18)

πuFt(s)=
(
ε−1
ϕ(s)

)
(r̂mc∗t (s)+q̂t−r̂puFt(s))+

(
ε

ϕ(s)
P0

PuF0(s)

)
ˆ̃µ∗
ut(s)+βEt [πuFt+1(s)] , (19)

where hat-notation denotes deviations from steady state, πt(s) ≡ lnPt(s) − lnPt−1(s), πFt(s) ≡
lnPFt(s) − lnPFt−1(s), rmct(s) = ln (MCt(s)/Pt), rmc∗t (s) = ln (MC∗

t (s)/P
∗
t ), rpHt(s) =

ln (PHt(s)/Pt), rpuFt(s) = ln (PuFt(s)/Pt), and qt = lnQt. Equations 18-19 are sector-level
domestic and import price Phillips curves.

Binding Constraints as Markup Shocks An important conceptual point is that binding con-
straints – when µt(s) or µ∗

ut(s) are strictly positive – appear as “markup shocks” in reduced form.
That is, binding constraints lead inflation to be higher than can be accounted for given parameters,
real marginal costs, and expected inflation. Thus, one can identify whether constraints bind in our
model using the same approaches that would typically be used to identify exogenous, reduced-form
markup shocks in standard New Keynesian models.

Whereas exogenous markups shocks in New Keynesian models typically are micro-founded by
assuming that there are shocks to the elasticity of demand, the endogenous “markups shocks” in
our model have a different structural interpretation. Markup shocks arise in our model not because
the competitive environment per se has changed – i.e., market structure and demand elasticities
are time invariant – rather firm conduct changes when constraints bind. Firms cease to make price
changes to target their ideal (flexible price, CES) markups; they instead “price to demand,” based
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on willingness to pay for their constrained output.17 Further, markups may rise and fall sharply (re-
flecting non-linearities) as constraints are triggered and relaxed, such that the evolution of markups
in times of binding constraints will be different than in normal times when constraints are always
slack.

This “markup shock” interpretation of binding constraints also serves to highlight how the
mechanism we emphasize is distinct from alternative explanations for the inflation surge. First,
much attention has focused on the role of labor shortages. At the aggregate level, these may reflect
changes in worker preferences for supplying labor, or other constraints on labor supply. At the sec-
tor level, worker shortages may be explained by impediments to reallocating workers in response
to differential changes in demand across sectors.18 In either case, demand for workers outstripping
supply ought to manifest as higher wages, which would then drive marginal costs higher. Thus, one
would expect to see that changes in real marginal costs explain inflation outcomes, not markups
(one might even expect markups to be compressed where labor shortages are tightest). To the ex-
tent that constraints masquerading as markup shocks explain inflation, this then limits the scope for
these alternative labor market mechanisms. All that said, we will discuss exactly how incorporating
labor market shocks and constraints affects inflation in Section 4.3.

In a related vein, the approach we adopt for modeling capacity differs from prior literature,
which has emphasized variable capital utilization rather than output-based capacity constraints
[Greenwood et al. (1988); Gilchrist and Williams (2000)]. In this literature, it is typically assumed
that higher rates of capital utilization lead capital to depreciate faster. As a result, higher utilization
raises the effective marginal cost for the firm (including wages, user costs of capital, and increased
capital depreciation), so utilization affects inflation through marginal costs. Further, with the func-
tional form assumptions in Greenwood et al., the standard log-linear Phillips Curve relationship
between marginal costs and inflation (equivalently, utilization and inflation) holds. Thus, this al-
ternative approach to capacity utilization will struggle to explain the highly non-linear response of
inflation observed in recent data.

Profits Our model implies that price-cost margins (realized markups) are high when firms face
binding constraints. To examine the plausibility of this channel, we turn to data on profits per unit of
output, which serves as an observable proxy for price-cost margins. To formalize this link, note that

17The conclusion that capacity constraints influence firm conduct, holdingmarket structure fixed, is not unique to our
set up. For example, in oligopoly models with symmetric firms, Bertrand competition leads to competitive (marginal
cost) pricing when firms are unconstrained. However, the Bertrand equilibrium features prices set above marginal cost
when firms are capacity constrained, such that they cannot collectively meet total market demand when prices equal
marginal cost.

18We have assumed that factors are perfectly mobile across sectors in our model, with a common economy-wide
wage. This contrasts with Ferrante et al. (forthcoming), who analyze how asymmetric demand shocks lead to inflation
when there are worker reallocation frictions.

16



Figure 4: Corporate Profits per Unit of Gross Output
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Note: Corporate profits (with inventory valuation adjustments) and gross output are from the US Bureau of Economic
Analysis (series identifiers: N400RC and A390RC). The corporate profits per unit of gross output are are reported as
an index, measured relative to their value in 2017Q1.

the absolute markup is equal to profits per unit of output in the steady state: Pt(s)−MCt(s) =
Ξt(s)
Yt(s)

,
where Ξt(s) ≡ Pt(s)Yt(s) −MCt(s)Yt(s) is the profit of the representative producer in sector s.
Thus, tracking profits per unit over time sheds light on how markups are changing.

In Figure 4, we plot indexes of US corporate profits per unit of gross output for both the man-
ufacturing sector and the aggregate private sector.19 The takeaway is that profits per unit escalated
sharply for manufacturing firms during the pandemic recovery, coinciding with the takeoff in goods
price inflation and widespread complaints about binding (supply chain) constraints that limited pro-
duction. Further, total profits (profits per unit times quantity sold) were at historically high levels
in 2021. This pattern of high profitability alongside high inflation is a natural outcome of binding
(domestic) constraints in our model. More recently, profit margins appear to be falling as inflation
has declined in 2023 [Kerr (2023)].

3 Accounting for Inflation

We now apply the model to parse recent data. We describe the procedure we use to estimate the
model in Section 3.1, with additional details in the Online Appendix. Then, we discuss data, cali-
bration, and estimated parameters in Section 3.2. Section 3.3 reviews model fit. We analyze what
the model tells us about recent inflation in Section 3.4.

19This corporate profit measure omits profits attributable to non-corporate entities; We focus on corporate profits
because data is available for manufacturing on a quarterly frequency in the national accounts.
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3.1 Estimation Framework

Referring back to Section 2.5.1, the impact of a given structural shock in the model depends on
whether constraints bind today following the shock, as well as the duration that constraints are
expected to continue to bind into the future following that shock. To make this dependence explicit,
let us define a set of regimes (Rt), which record which constraints are binding at a given point in
time: Rt =

{
1
(
Yt(1) = Ȳt(1)

)
, 1
(
Y ∗
Mt(1) = Ȳ ∗

Mt(1)
)}
, where the indicator functions switch on

when individual constraints bind. Given a sequence Et {Rt+j} for 0 ≤ j ≤ J , together with the
assumption that Et {Rt+j} = {0, 0} for j > J , we can solve for an equilibrium path for {Xt}, using
the method described in Cagliarini and Kulish (2013) and Kulish and Pagan (2017).

Building on this idea, we re-parameterize the model solution in a convenient way. Specifically,
let us define the duration that constraints are expected to bind from date t forward as dt = [dt, d

∗
t ],

where each entry is a non-negative integer that records the number of periods that the domestic (dt)
or foreign constraint (d∗t ) binds. By convention, dt and d∗t take on zero values when constraints are
slack today and expected to remain so in the absence of future shocks, and they are positive when
they are binding today. As in Guerrieri and Iacoviello (2015), we construct policy matrices under
the assumptions that agents know the state (Xt−1) and the current realization of the shocks (εt), but
that they do not anticipate that future shocks will occur. Under these assumptions, dt summarizes
all the information about the anticipated sequence of regimes that is needed to solve for equilibrium
responses to a one-time shock in our model. Specifically, constraints may switch on immediately
in response to shock at date t, then bind for some (non-negative) number of consecutive periods,
and switch off thereafter. In the absence of future shocks, constraints do not then switch on again
in periods after they switch off (e.g., following a shock εt, constraints cannot be slack at date t and
then binding at date t + 1).20 With these observations, we re-write the model solution directly in
terms of durations:

Xt = J (dt, θ) +Q (dt, θ)Xt−1 +G (dt, θ) εt, (20)

where duration dt implies a specific anticipated sequence of regimes over time.
FollowingKulish et al. (2017), Kulish and Pagan (2017), and Jones et al. (2022a), our estimation

framework exploits the fact that durations enter the policy function like parameters. As is standard,
let us assume that observables (St) are linearly related to the unobserved state, as in St = HtXt+νt,
where νt is an i.i.d. vector of normally distributed measurement errors. Given d ≡ {dt}Tt=1 and θ,
we can construct the piecewise linear solution with time-varying coefficients, and then apply the

20To be careful, this is not a general property of models with potentially binding constraints, but rather one that
holds given the structural assumptions in our model about behavior and shock processes. While we lack a general
proof of this property, we verify it holds numerically in the model in practice, and we can demonstrate that imposing
this criterion in the estimation procedure is reasonable via simulation analysis. One could capture a more complex
structure of potential regime changes via introduction of additional parameters (e.g., durations for binding constraints
that start one period forward), at the cost of added computational complexity.
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Kalman filter to construct the Likelihood function L(θ, d| {St}Tt=1). We put priors over structural
parameters and independent priors over durations to construct the posterior, and then estimate the
model via Bayesian Maximum Likelihood.

In implementing this approach to estimation, we are careful to account for the fact that the
duration of binding constraints is an equilibrium object in the model – i.e., dt depends on both the
stateXt−1 and current shock εt in our model. Thus, we impose a rational expectations equilibrium
restriction on admissible durations, which requires that agents’ forecasts about how long constraints
bind following a given shock are consistent with equilibrium model responses. To impose this
restriction, we proceed as follows. For each proposed duration and parameter draw, we filter the
data for smoothed shocks. We then evaluate whether the equilibrium model response to those
smoothed shocks is consistent with the proposed duration draw. We retain the proposed draw if
this requirement is satisfied; otherwise, we reject it and draw again.

In the Online Appendix, we study the performance of this procedure using simulated data, for
which we know the true data generating process and the exact incidence of endogenously binding
constraints. First, we confirm that our estimation procedure is able to recover unobserved durations
from the observables that we use, by directly examining likelihood functions. Then, we also show
that the reduced-form multipliers implied by the duration and parameter estimates align with true
latentmultipliers, which summarize the impacts of binding constraint on inflation, our key outcome.

Lastly, as a practical matter to restrict the size of the parameter space, we impose priors that
allow capacity constraints to bind only periods from 2020:Q2 forward. Put differently, we impose
dogmatic priors that assign zero probably to binding constraints prior to 2020:Q2, thus focusing on
the role of capacity in explaining the unusual post-pandemic inflation dynamics.21

3.2 Data and Parameters

To populate Yt, we collect standard macro variables together with particular series that serve to
identify whether constraints are binding and shocks to them. Among standard macro variables, we
include consumption price inflation and the growth rates of consumption expenditure for goods and
services. We also use data on aggregate nominal GDP growth, the growth rate of (real) industrial
production (which we treat as a proxy for output of the goods sector), and labor productivity growth
by sector (measured as real value added per worker).22 On the international side, we use data on

21As a robustness check, we have estimated the model allowing constraints to potentially bind starting in 2018:Q1,
prior to the pandemic. We find that the mode of estimated durations before 2020:Q2 is zero, and that the mode of
estimated durations after 2020:Q2 is not affected by the initial date when capacity constraints can bind.

22We use data on labor productivity growth in manufacturing and total (private sector) labor productivity growth
from the Bureau of Labor Statistics. We assume that labor productivity growth in manufacturing coincides with goods
labor productivity (growth in real value added per worker) in the model, while also matching aggregate (economy-
wide) labor productivity growth in the model. While the definition of industrial production and goods output do not
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import price inflation for consumption goods, and we proxy input price inflation in the model using
data on inflation for imported industrial materials (excluding fuels). We then also use data on the
growth of total expenditure on imported consumption goods and imported materials inputs (again
excluding fuels), which we associate with imported inputs of goods.23

These data are all obtained from quarterly US national accounts produced by the Bureau of Eco-
nomic Analysis, with the exception of labor productivity data from the Bureau of Labor Statistics
and industrial production from the Federal Reserve Board (G.17 program). Having constructed
growth rates for individual variables from the first quarter of 1990 through the fourth quarter of
2022, we detrend the data by removing the mean growth rate from each series. Finally, because
our estimation sample includes a significant period during which interest rates are at the zero lower
bound, we use data on the “shadow Fed Funds rate” to estimate parameters in the monetary policy
rule.24

We present the full set of parameters for the model in the Online Appendix, which we obtain
through a mix of estimation and calibration. We calibrate key value shares in the model – e.g.,
consumer expenditure, input use, export and import shares, etc. – to match US national accounts
and input-output data. We set a subset of the structural parameters to standard values from the
literature, including preference parameters and some elasticities of substitution.

We also calibrate the level of excess capacity for domestic and foreign firms, setting Ȳ0(1) =
1.05Y0(1) and Ȳ ∗

M0(1) = 1.10Y ∗
M0(1). These levels are chosen to be sufficiently high that con-

straints are slack prior to 2020:Q2, given our maintained assumption that there are no capacity
shocks prior to that period.25 Further, note that the model and data allows us to estimate the level
of capacity that actually prevailed during the pandemic. Alternative values for steady state capacity
then re-scale the size of the capacity shocks needed to achieve this realized capacity level.26

align exactly, the dynamics of gross output for the goods sector and industrial production are similar.
23We use data for consumer goods (except food and automotive) to proxy for consumption imports, and we construct

proxies for imported inputs (excluding fuels) by removing the subcategory of petroleum and products from industrial
materials and supplies using standard chain index formulas and auxiliary NIPA data on the sub-categories of imports.

24During periods where the nominal Fed Funds rate is at zero, we replace it with the shadow rate from Wu and Xia
(2016): https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate. Changes in
the shadow rate capture the consequences of unconventional policy actions taken by the Federal Reserve, such as
forward guidance or quantitative easing policies. We have checked the results using an alternative shadow rate series
from Jones et al. (2022b) as well, which yields similar results.

25This amount of domestic excess capacity is consistent with historical fluctuations in capacity utilization for the US,
as measured by the Federal Reserve’s G.17 data series, for which the maximal value for capital utilization about five
percent higher than the minimum. Further, cyclical fluctuations in this capacity utilization measure are almost entirely
driven by changes in industrial production itself, rather than the Fed’s estimate of capacity (based on firm survey data).
Thus, our calibration accommodates historically normal fluctuations in industrial production, absent shocks to capacity.

26Consistent with this observation, the level of calibrated steady state capacity is not an important parameter in
understanding the key quantitative results. To demonstrate this robustness, we estimate steady-state capacity levels
directly in the Online Appendix, using data from the pandemic period, and show that our main counterfactual results
go through with this alternative parameterization.
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Turning to the final set of parameters, we estimate (a) the elasticities of substitution between
home and foreign goods, in consumption and production separately; (b) the parameters in the ex-
tended Taylor rule governing the response of interest rates to inflation and output, as well as interest
rate inertia, (c) parameters governing the stochastic processes for exogenous variables, and (d) the
variance of measurement errors. Regarding (c), we assume that exogenous variables evolve ac-
cording to AR1 stochastic processes.

We obtain an estimated mean value for the elasticity of substitution between home and foreign
goods of about 1.5 in consumption and 0.5 for inputs, so consumer goods are substitutes while
inputs are complements. These values are not far from standard values estimated using aggregate
time series variation in the macroeconomic literature, though there is limited prior work that dis-
tinguishes consumption and input elasticities. We find that the policy rule displays inertia, and it
responds to both inflation and output gaps with reasonable magnitudes. There is significant persis-
tence in most exogenous variables, and measurement error variances are plausible. See the Online
Appendix for the estimated parameters.

3.3 Model Fit

Applying the quantitative model framework to the data, we construct Kalman-smoothed values for
endogenous variables and observables. In Figure 5, we plot data and smoothed values for several
key observables – goods, services, and aggregate price inflation for consumers, and imported input
price inflation – over the 2017-2022 period, where each data point is the annualized value of quar-
terly inflation. To compute the smoothed inflation series, we take 1000 draws from the posterior
distribution for model parameters, compute Kalman-smoothed inflation for each draw, and then
plot statistics (the median, 5th, and 95% percentiles) for the distribution of smoothed values.

The model fits the dynamics of aggregate consumer price inflation well, accounting for essen-
tially all of the four percentage point increase in headline inflation after 2020 (Figure 5a).27 It also
accounts well for the two percentage point rise in inflation for the services sector (Figure 5b). Be-
cause goods price inflation is substantially more volatile than that for services, the model attributes
more of its variation to measurement error. Nonetheless, smoothed values for goods price inflation
also track the data well (Figure 5c). The model replicates the initial (roughly six percentage point)
surge in goods price inflation in 2021, and goods price inflation then remains elevated into 2022.

27Recall that aggregate consumer price inflation is treated as an unobserved variable. In the model, it is constructed
by aggregating sector-level consumer price growth using fixed (steady-state) expenditure weights. In the data, however,
the PCE deflator is a chain-weighted index, which features time-varyingweights. Thus, part of the discrepancy between
aggregate inflation in the model and data is likely due to differing index number concepts. Specifically, the dramatic
increase in the goods expenditure share, combined with high goods price inflation, likely pushed measured inflation
up relative to our fixed-weight index. Going forward, we focus entirely on decomposing model-based measures of
inflation, so we do not belabor this point.
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Figure 5: Consumer Price Inflation in Model and Data

(a) Aggregate Consumer Inflation
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(b) Consumer Services Inflation
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(c) Consumer Goods Inflation
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(d) Inflation for Imported Goods Inputs
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Note: Inflation at each date is the annualized value for demeaned quarterly inflation, in percentage points. If
demeaned quarterly inflation is πt(s) = lnPt(s)− lnPt−1(s) where t indexes quarters, then the annualized inflation
rate is 4πt(s). Data is raw data. We take 1000 draws from the posterior distribution of model parameters, compute
the Kalman-smoothed values for model variables for each draw, and then plot the median smoothed value as the
dashed line. We shade the area covering the 5% to 95% percentile for smoothed values (the interval is imperceptibly
small prior to 2020).

While the model captures its transitory (up/down) dynamics, it moderately undershoots the level
of goods price inflation in 2022, meaning that the model attributes the gap to measurement error.
The model also matches inflation for imported goods inputs well (Figure 5d), matching both levels
and dynamics closely.

For brevity here, we present similar figures illustrating model fit for the remaining observables
in the Online Appendix. Together with the inflation figures here, we assess that the model cap-
tures the behavior of economic variables well during the pandemic, so it is a useful laboratory for
exploring the driving forces underlying the inflation surge.
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3.4 Explaining the Inflation Surge

We provide three sets of results. The first two illustrate the role of constraints in explaining in-
flation. First, we examine the dynamics of the multipliers on the constraints. Second, we present
counterfactuals in which we switch off the constraints, comparing model responses to the same set
of shocks with and without constraints. The third set of results focuses on how individual shocks
and constraints shape inflation outcomes, both individually and via interactions between them.

3.4.1 Multipliers on Constraints

To start, we can directly illustrate the impact of constraints by examining the smoothed value of
multipliers on the domestic and foreign constraints. Because the multipliers themselves do not
have intuitive economic units, we plot the reduced-form markup shocks implied by the value of the
multipliers – given by

(
ε

ϕ(s)
P0

PH0(s)

)
ˆ̃µt(s) in Equation 18 and

(
ε

ϕ(s)
P0

PuF0(s)

)
ˆ̃µ∗
ut(s) in Equation 19 –

which summarize the impulse of binding constraints for domestic and import price inflation. As is
evident, the values of the multipliers rise in 2021, coincident with the rise in headline inflation.28

On the import side, constraints appear to be slack in 2020, then bind sharply at the start of 2021,
relax somewhat, then bind sharply again into 2022, and ease in the latter half of 2022. Domestic
multipliers fluctuate in 2020 with gyrations in the US economy, but are near zero heading into 2021.
They rise steadily through 2021 into 2022, and then slacken (though still bind) through 2022:Q3.

While there is limited external data to which we can benchmark the estimated multipliers, we
note that their joint dynamics align well with fluctuations in the NewYork Federal Reserve’s Global
Supply Chain Pressure Index over the post-2020 period, as we illustrate in the Online Appendix.
For both multipliers, the high frequency dynamics also correspond to fluctuations in goods price
inflation and imported input price inflation in Figure 5, which foreshadows the quantitative role of
the constraints in explaining inflation. Further, the large absolute size of increases in multipliers,
and their volatility translate into large, abrupt shifts in the Phillips Curves. In the Online Appendix,
we show that these quasi-markup shocks are substantially larger than would be consistent with a
stochastic process for (exogenous) markup shocks estimated from pre-pandemic data. Thus, our
model appears to capture a source of markup variation that is distinct from run-of-the-mill markup
(elasticity of demand) shocks. We turn to model counterfactuals to parse the role of constraints
further.

28Weplace positivemass in our priors on positive values for dt only starting in 2020:Q2, somultipliers are identically
zero before that date. Further, while multipliers are typically positive, they sometimes take on negative values in the
simulations. This is due to model approximation error, due to the piecewise linear solution technique that we employ.
When constraints bind, the multipliers are computed as residuals in the log-linearized Phillips Curves. As such, the
computed multipliers are approximations to the exact equilibrium multipliers; further, we do not impose a zero lower
bound on them, as would be required in the full non-linear solution to the model. Despite this, the estimated multipliers
are typically positive, consistent with the underlying theory.
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Figure 6: Smoothed Values for the Reduced-Form Markup Shock Implied by the Multipliers on
Constraints

(a) Domestic Constraint
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(b) Foreign Constraint

0
.1

.2
.3

Lo
g 

D
ev

ia
tio

n 
fro

m
 S

te
ad

y 
St

at
e

2017 2018 2019 2020 2021 2022 2023

Median Smoothed Value
5th-95th Percentiles

Note: Figure 6a plots composite variable
(

ε
ϕ(s)

P0

PH0(s)

)
ˆ̃µt(s) and Figure 6b plots composite variable(

ε
ϕ(s)

P0

PuF0(s)

)
ˆ̃µ∗
ut(s), which are the reduced-form markup shocks in domestic and import price Phillips Curves

induced by binding constraints. We take 1000 draws from the posterior distribution of model parameters, compute
the Kalman-smoothed values for model variables for each draw, and then plot the median smoothed value as the solid
line. We shade the area covering the 5% to 95% percentile for smoothed values.

3.4.2 Relaxing Constraints

We now provide counterfactual analysis as to how inflation would have evolved in the absence of
capacity constraints, given the path of realized shocks that we infer hit the US economy after 2020.

To describe this exercise more precisely, the mechanics of each iteration are as follows. We
first draw model parameters from the estimated posterior distributions, including the durations for
binding constraints. Given these parameters, we apply the Kalman-filter to the data and construct
smoothed model outcomes and shocks. Note that we construct smoothed shocks here assuming that
constraints are potentially binding, in line with posterior duration estimates. Using these smoothed
shocks, we then simulate the path of the economy under the counterfactual assumption that con-
straints are slack throughout, such that the solution conforms to the unconstrained equilibrium
dynamics of the model. We repeat this procedure for one thousand posterior draws, and we plot
statistics (means and percentiles) across these simulations in Figures 7 and 8.

Figure 7 presents results for consumer price inflation. The figures present raw data on annual-
ized values of (de-meaned) quarterly inflation, along with data from counterfactual simulations in
which we allow for measurement error in these observables.29 In Figure 7a, we see that realized
inflation for consumer goods is substantially higher than counterfactual inflation with slack capac-

29For each iteration, we draw the variance of themeasurement error from the posterior and filter the data for smoothed
shocks. We then add a draw from the measurement error to the smoothed counterfactual endogenous variables to get
counterfactual values for the observables that are comparable to data.
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Figure 7: Counterfactual Consumer Price Inflation without Capacity Constraints

(a) Goods Inflation
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(b) Services Inflation

-4
-2

0
2

4
Pe

rc
en

ta
ge

 P
oi

nt
s

2017 2018 2019 2020 2021 2022 2023

Data
Median Counterfactual Value
5th-95th Percentiles

(c) Aggregate Inflation
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Note: We take 1000 draws from the posterior distribution of model parameters, compute the Kalman-smoothed
values for model variables for each draw, add measurement error to the observables, and then plot the median
smoothed value as the solid line. We shade the area covering the 5% to 95% percentile for smoothed values.

ity constraints during 2021 and into 2022, with the absolute gap peaking near six percentage points
in early 2021. Put differently, given the shocks we infer from data, binding constraints account for
about half of the acceleration in goods price inflation from 2020:Q2 through 2021:Q2. Likewise,
they appear to explain about half of the decline in goods price inflation in the latter half of 2022.

Under the hood, these inflation outcomes are tied to the impact of binding constraints in holding
back production of domestic goods and foreign goods inputs. In Figure 8a, we plot the path for
smoothed domestic goods output along with counterfactual output. As is evident, in the absence of
constraints, goods output would have risen significantly in 2021 relative to its pre-pandemic level,
as a result of the other shocks (principally, demand shocks) that hit the economy. The fact that output
did not rise in reality speaks directly to the role of constraints. Output of foreign goods inputs is
similarly constrained in Figure 8b. Correspondingly, smoothed inflation for both domestically-
produced goods and foreign-produced inputs is substantially higher than counterfactual inflation in
Figures 8c and 8d.

Interestingly, binding constraints also play an important role in driving price inflation for ser-
vices in Figure 7b. While services price inflation initially accelerates due to the underlying shocks,
it is between one and two percentage points higher in 2021 as a result of binding constraints. In
the background, this reflects both the fact services use goods as inputs, so there is a direct inflation
spillover from binding constraints in the goods sector via input-output linkages. Further, binding
constraints serve to tighten the labor market as well, as the price increases they trigger substitution
from goods inputs toward labor in production.

Adding up these results in Figure 7c, headline consumer price inflation is between one and two
percentage points higher than counterfactual inflation during 2021-2022. And binding constraints
account for about one half of the acceleration in headline goods price inflation. Note further that the
effect of constraints is substantially diminished late in 2022, as actual and counterfactual inflation
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converge again.
Finally, we revisit the discussion about profits per unit. In Figure 4, we presented an index of

nominal profits per unit of gross output for manufacturing and the aggregate economy. In Figures
8e and 8f, we present analogous results from the model for goods and services.30 Similar to the
data, our model yields a sharp increase in profits for the goods sector during the 2021-2022 period,
even though this is not a targeted data moment. In contrast, the counterfactual economy with slack
constraints yields no such goods profit surge. Moreover, profits per unit are essentially flat through
the pandemic period (outside the 2020 spike), for both the economies with and without capacity
constraints. We conclude that the model provides a plausible explanation for the run-up in profits
for goods producers that occurred alongside the inflation takeoff, where both are explained in large
measure by binding capacity constraints.

3.4.3 Decomposing the Role of Individual Shocks

We now examine the role of individual shocks in explaining inflation outcomes. To construct the
counterfactual series, we take a draw from the posterior distributions for structural parameters and
durations. Using this draw to parameterize the state equation (Equation 20), we Kalman filter the
data to obtain smoothed shocks. We then feed a subset of these shocks into the structural model
(summarized by Equation 17) to compute counterfactual model outcomes. In each case, we solve
for the simulated equilibrium path using Dynare’s OccBin procedure. By doing so, we ensure that
whether constraints bind at particular points in time in response to shocks is endogenous. We repeat
this procedure 1000 times and compute the median across the simulated counterfactual series, and
these medians are plotted in Figure 9.

In Figure 9a, we plot the path of aggregate consumer price inflation following four types of
shocks, each fed individually into the model: demand shocks (including both the discount rate
and goods-biased preference shocks), monetary policy shocks, capacity shocks, and cost shocks
(including domestic productivity and foreign cost shocks). The final line is the value for inflation
when all shocks are fed simultaneously into the model. At the outset, temporary negative demand
shocks yield a decline then rebound of inflation in 2020. Into 2021, however, no single shock
appears to play a particularly important role in explaining the path of inflation on its own. The
underlying reason is that no single shock is capable of causing capacity constraints to bind, somodel
outcomes conform closely to those observed in the prior counterfactuals in which we exogenously
relaxed the constraints.

30In the model, the log change in nominal profits per unit of output from a given base period (t = 0) is given
by:

[
Ξ̂t(s)− ŷt(s)

]
−
[
Ξ̂0(s)− ŷ0(s)

]
= [p̂Ct − p̂C0] + ϵ [r̂pt(s)− r̂p0(s)]− (ϵ− 1) [r̂mct(s)− r̂mc0(s)], where

p̂Ct − p̂C0 =
∑t

s=0 πCs. We add trend inflation to these log changes to make it comparable to the data in Figure 4,
and then we convert the log change to levels to plot the index.
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Figure 8: Counterfactual Quantities, Inflation, and Profits without Capacity Constraints

(a) Domestic Goods Output (Yt(1))
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(c) Domestic Goods Price Inflation (πt(1))
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(d) Imported Goods Input Inflation (πMt(1))
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(e) Profits per Unit: Goods
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(f) Profits per Unit: Services
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Note: We take 1000 draws from the posterior distribution of model parameters, compute the Kalman-smoothed
values for model variables for each draw, and then plot the median smoothed value as the solid line. We shade the
area covering the 5% to 95% percentile for smoothed values. Counterfactual assumes that constraints are slack in all
periods.
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Figure 9: Counterfactual Consumer Price Inflation for Individual Shocks

(a) Individual Shocks
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Note: Each series represents the simulated path of consumer price inflation (quarterly value, annualized) for the
indicated subset of smoothed shocks during 2020-2022. See text for definition of the counterfactuals.

In Figure 9b, we plot a second set of counterfactuals, in which individual shocks are fed into the
model in combinationwith shocks to capacity. In contrast to the prior figure, monetary policy stands
out here. While monetary policy shocks play essentially no role in 2020, expansionary monetary
policy shocks in 2021 – combined with prevailing negative capacity shocks – lead inflation to
increase by about 4 percentage points in 2021. Put differently, while negative capacity shocks
alone do not cause the constraints to bind, they set the stage for demand-side shocks – especially
expansionary monetary policy – to trigger the constraints.

The size of the monetary policy shocks that we recover from the data is notable. The Federal
Reserve left rates low in 2021, in the face of rapidly rising inflation: the shadow Fed Funds rate
was over three percentage points lower than the policy rate called for by the extended Taylor rule
(see the Online Appendix) at that time. As the Federal Reserve rapidly raised rates thereafter, it
brought them back in line with the extended Taylor rule by end of 2022. Correspondingly, inflation
fell rapidly in the latter half of 2022, as demand receded and constraints were relaxed.31 Thus, we
conclude that the dynamics of monetary policy during this period, together with shocks to capacity,
are the driving force behind the rapid rise and subsequent fall in inflation during the post-pandemic
period.

31In contrast, the role of the discount rate shock is muted in 2021, but it pushes up inflation in 2022. These shocks
may reflect the role of fiscal policy, in part. Examining historical variance decompositions, we find that shocks to the
discount rate play a significant role in explaining fluctuations in output. However, monetary shocks play a larger role
than discount rate shocks in 2021.
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Figure 10: Accounting for Energy Shocks

(a) PCE Inflation with and without Energy
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Note: In Figure 10b, each series represents the simulated path of consumer price inflation (quarterly value,
annualized) for all shocks and the indicated set of constraints during 2020-2022.

4 Extensions

In this section, we present three extensions. First, we examine whether our results change when
we account more carefully for energy shocks. Second, we examine the role of fiscal policy shocks,
in addition to monetary policy shocks, in a two-agent New Keynesian (TANK) model. Third, we
enrich the labor market, which allows us to study the impact of labor market disruptions during the
pandemic period.

4.1 Accounting for Energy Shocks

During 2021-2022, global energy prices escalated, as strong demand for energy combined with
supply disruptions (e.g., following from the Ukraine war) to drive energy prices up. Further, since
the middle of 2022, energy prices have receded rapidly as inflation has cooled. A natural ques-
tion arises then about whether the dynamics of inflation that we attribute to occasionally binding
constraints might instead be driven by these energy price fluctuations.

To frame this discussion, note that our model abstracts from the peculiar features of energy mar-
kets – i.e., we do not attempt to model energy prices, production, and demand explicitly. Therefore,
we think it reasonable to estimate our model using data that also excludes energy prices. In part,
we have already done this in prior sections, in that we have stripped out petroleum and fuels when
we constructed the price index for imported materials. Here we also remove energy prices from
the domestic price indexes used in estimation – constructing PCE inflation for goods and services,
excluding energy. Specifically, we remove prices for “gasoline and other energy goods” (which
includes motor vehicle fuels and lubricants, fuel oil, and other fuels) from the goods PCE price in-
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dex, and then we remove prices for electricity and gas utilities from the services PCE price index.
We then re-estimate the model using the modified domestic price indexes.

In Figure 10a, we plot the adjusted PCE inflation series for goods prices and overall consump-
tion.32 Goods price inflation is virtually indistinguishable with/without energy through 2021:Q3,
during the initial inflation takeoff. Thereafter, energy prices push inflation up during early 2022,
and then rapidly bring goods price inflation down thereafter. Nonetheless, the basic inverted U-
shape for goods price inflation appears in both series, with non-energy goods price inflation falling
from 8 percent to near zero during the course of 2022. Overall PCE price inflation then reflects
these deviations in goods price inflation.

In Figure 10b, we investigate the role of these differences for our conclusions about the role
of constraints in explaining inflation dynamics. The simulations here follow the same scheme as
in Section 3.4.3: we compare simulated inflation when all shocks are fed through the model to
counterfactual inflation when one or both constraints are relaxed. As in the prior counterfactuals,
binding constraints continue to play a large quantitative role in driving inflation. Further, note that
here we decompose the role of binding constraints for domestic goods production versus imports.
Both constraints appear to be important, though the domestic constraint has a larger impact on
inflation than the import constraint in most periods.

4.2 Fiscal Shocks in a TANKModel

In additional to monetary policy, the US government (like governments around the world) also
deployed fiscal policy instruments to cushion the economic impact of the pandemic. While this
response was multifaceted, we highlight two salient features of it. First, there was a large increase
in the overall US budget deficit. Second, there was also a large increase in transfer payments,
including unemployment benefits, tax rebate checks, and social spending [Romer (2021)]. Both
elements of this fiscal response could reasonably be presumed to stimulate the economy, so omitting
them could potentially lead us to overstate the role of monetary policy in driving inflation.

To address these concerns, we extend the model in two ways to incorporate fiscal policy, with
details provided in theOnlineAppendix. First, we add a fiscal authority to themodel, which collects
income taxes and makes transfer payments to households, and is able to run budget deficits. To
ensure that fiscal authority is solvent in the long run, we assume its transfer payments are controlled
by a fiscal rule, in which transfer payments are adjusted to stabilize the stock of real debt in the long
run: r̂tt = φ1r̂tt−1−φ2r̂bt+εt, where r̂tt is the log deviation in the real transfer from steady state,
and r̂bt is the log deviation in real debt (nominal debt divided by the consumer price level) from
steady state. Fiscal policy shocks (εt) combine with endogenous changes in income tax revenue

32Services inflation looks very similar with and without energy prices, so we omit it for clarity in the figure.
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and government financing costs to account for short-term fluctuations in the fiscal deficit.33

Second, to capture the re-distributive aspects of transfer payments, we assume there are two
types of households: some households are hand-to-mouth consumers (consuming all their income
each period, with no borrowing/saving), while the remainder have access to complete financial
markets (as in the baseline model). Further, we assume that fiscal transfers are made exclusively to
the hand-to-mouth consumers, which serves to strengthen the stimulative impact of deficit-financed
transfers.

To estimate parameters in the government’s fiscal rule and recover fiscal shocks, we use the
deficit as a share of GDP (in log deviations from steady state) as an additional observable data
series. We calibrate the share of hand-to-mouth households to be XX. We calibrate the real stock
of debt to be XX in steady state, and set the constant income tax rate to 0.2. In the fiscal rule, we
set φ2 = XX , which is sufficiently large to ensure monetary dominance. We then re-estimate the
full model with these modifications, including the autocorrelation parameter (φ1) and variance of
shocks in the fiscal rule.

[TO BE COMPLETED]

4.3 Enriching the Labor Market

Motivated by pervasive disruptions in labor markets during the pandemic period and recovery, we
enrich the labor market of the model in three ways. First, we allow for adjustment frictions for nom-
inal wages, in addition to price adjustment frictions. Second, we introduce shocks to the disutility
of labor supply, which stand in for various pandemic-related supply shocks (e.g., responses to dis-
ease risk, the great resignation, etc.). Third, we incorporate an occasionally-binding constraint on
labor supply, in addition to the goods market capacity constraints considered previously. Unlike
normal times, labor supply constraints plausibly loomed large during the COVID period, where
stay-at-home orders, school closures, and other abnormal policies constrained households’ ability
to supply labor to the market.

For brevity, we consign the details about this extended model to the Online Appendix, and we
instead focus on one key result here. The model yields a wage Phillips Curve:

πWt =

(
ϵL − 1

ϕW

)
[m̂rst − r̂wt] +

(
ϵL
ϕW

P0

W0

)
ˆ̃µLt + βEt (πWt+1) , (21)

where πWt is nominal wage inflation, mrst is the log of the marginal rate of substitution between
labor supply and consumption in preferences, rwt is the log real wage, and µ̃Lt ≡ 1 + (µLt/Ct

−ρ)

33For simplicity, we assume the government issues one period debt, and it is able to borrow at the risk-free (short-
term federal funds) interest rate.
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is a function of the multiplier on the labor constraint (µLt).34

Two important results follow from inspection of Equation 21. The first (standard) result is that
labor (disutility) supply shocks enter the wage Phillips curve via the marginal rate of substitution
(m̂rst), where increased disutility of supplying labor raises m̂rst and thus wage inflation. Else-
where in the model, increases in the disutility of labor supply also naturally lower the equilibrium
quantity of labor employed as well. The second (non-standard) result is that binding labor con-
straints appear as reduced-form “markup shocks” in the wage Phillips Curve. As a result, binding
labor constraints drive up wage inflation, conditional on the other labor market fundamentals.

With these results in hand, we turn to quantitative analysis. We calibrate several new parameters
(e.g., ϵL and ϕW ) based on external references. We then re-estimate the extended model along with
stochastic processes for labor disutility and labor constraint shocks using two new observable data
series: aggregate hours worked and real wage growth, which are constructed using data from the
US Bureau of Labor Statistics. Details on these steps are provided in the Online Appendix.

Turning to results, we illustrate model fit and smoothed multipliers on the labor constraint in
Figure 11. In Figure 11a, there is an obvious dramatic collapse in hours in early 2020:Q2, a rapid
partial rebound in Q3, and then a slow recovery thereafter through 2021. The model matches these
dynamics well, in large part through shocks to labor supply. In addition, Figure 11b illustrates that
there were sharp gyrations in real wage growth during the early pandemic. However, real wage
growth from 2020:Q4 forward was similar to the pre-pandemic period. Turning to Figure 11c,
the model clearly favors a binding labor constraint in 2020:Q2, in order to explain the spike and
subsequent collapse in real wage growth. Labor constraints then play a less important role in 2021-
2022. The median simulation has a slack or nearly slack labor constraint in most periods, though
labor constraints do appear to bind in 2022 for a non-trivial share of the simulations.

To evaluate how incorporating labor supply shocks and constraints affect our prior results, we
present two sets of counterfactuals.35 First, in Figure 12a, we illustrate how relaxing the goods
and labor constraints separately and in combination affects inflation. When the labor constraint is
assumed to be slack, inflation falls substantially at the outset of the pandemic, which is counter-
factual; thus, binding labor constraints help explain the absence of disinflation in 2020. However,

34For completeness, the parameter ϵL controls steady-state wage markups (the degree of market power exercised by
workers) and the parameter ϕW controls the flexibility of wages. See the Online Appendix for the details underlying
derivation of Equation 21, and how it fits into the remainder of the model.

35Like prior counterfactuals, we draw form the posterior to parameterize the model and filter smoothed shocks from
data, and we then simulate responses to subsets of the smoothed shocks under various assumptions about whether
constraints bind. Repeating this procedure 1000 times, we report median outcomes in the figures. As a technical
matter, we allow goods constraints to bind endogenously in all these simulations. The labor constraint is a third
constraint, which complicates simulation, as the Dynare implementation of OccBin only admits two potentially binding
constraints. Therefore, we impose the labor constraint by assuming that there are reduced-form wage markup shocks,
which are tied to the smoothed values of the multiplier on the labor constraint. We then solve for whether the two
goods constraints are binding endogenously.
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Figure 11: Model Fit with Labor Market Extensions
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(c) Reduced-Form Wage Markup
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Note: We take 1000 draws from the posterior distribution of model parameters, compute the Kalman-smoothed
values for model variables for each draw, and then plot the median smoothed value as the solid line. We shade the
area covering the 5% to 95% percentile for smoothed values. In Figure 11c, we plot the reduced form labor markup
shock term

(
ϵL
ϕW

P0

W0

)
ˆ̃µLt.

their impact dissipates rapidly, such that inflation is essentially similar across versions of the model
with and without labor constraints in 2021-2022. In contrast, assuming goods constraints are slack
has little impact on inflation in 2020, but then inflation would have been significantly lower in
2021-2022 with slack goods constraints (this echoes Figure 7c). Further, we point out that the
quantitative impact of removing the goods market constraints is essentially the same in this model
with labor supply (disutility) shocks as in the baseline without them.

Second, we investigate again how monetary policy interacts with constraint shocks in Figure
12b. The first simulation shuts off all shocks except for the monetary policy shocks, and the sec-
ond considers the joint impact of monetary policy shocks and capacity shocks for both domestic
and imported goods. As in the prior simulations, monetary policy alone has a moderate effect on
inflation, while monetary policy combined with capacity shocks lead to a rapid increase in infla-
tion in 2021, sustained high inflation through 2021 into 2022, and then a collapse in inflation from
2022:Q3 forward.

5 Concluding Remarks

We have developed a quantitative framework that places potentially-binding capacity constraints
at center stage. We show that binding constraints alter the Phillips Curve relationship between in-
flation and real marginal costs, introducing a term that looks like a markup shock in reduced form.
Applying the framework, we find that binding constraints are important drivers of US inflation dur-
ing 2021-2022, explaining half of the rise in inflation. We also find that negative capacity shocks,
which tightened constraints during the post-pandemic period, set the stage for demand shocks to
have outsized impacts on inflation. In particular, monetary policy shocks loom in accounting for
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Figure 12: Counterfactuals with Labor Market Extensions
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Note: Each series represents the simulated path of consumer price inflation (quarterly value, annualized) for the
indicated subset of smoothed shocks and constraints during 2020-2022.

the rise and fall of US inflation.
Going forward, there are various extensions of this framework that would be useful to consider.

While discount rate shocks capture important aspects of fiscal policy, it would be useful to provide
a more careful treatment of fiscal shocks. Further, we have included capacity as an exogenous,
stochastic variable in the framework. We also see high returns to extending the model to allow
for investment in capacity. Lastly, while we have focused on recent US inflation outcomes in this
paper, we intend to apply the model to parse data for other countries (e.g., the UK and euro area)
that experienced similar high inflation episodes. Because energy prices likely played a larger role
in these related contexts, we also see value in extending the model to treat energy supply and use
more carefully.

More generally, the framework we have developed can be deployed to study optimal policy,
as well as potential policy mistakes during the pandemic recovery. In our framework, demand
shocks shift both the IS and Phillips Curves when constraints bind. This complicates policy design,
relative to canonical frameworks in which demand shocks work only through the IS curve. Further,
since reduced-form markups may reflect either the influence of exogenous markup shocks, or the
impact of binding constraints, policy implementation will depend on the central bank’s ability to
discriminate between them. Given the importance of monetary policy shocks in our quantitative
analysis, a critical analysis of policy is warranted.
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APPENDIX [For Online Publication]

A Quantitative Model

We start by presenting equilibrium conditions for the model, and then we present the calibration
and estimation procedure. We proceed to discuss parameter estimates, model fit, and robustness
checks.

A.1 Model Equilibrium Conditions

As noted in the text, we study an equilibriumwith symmetric producerswithin each sector and coun-
try. Further, we write all prices relative to the domestic price level, and we defineΠt ≡ Pt

Pt−1
. Given

parameters and exogenous variables, an equilibrium is a sequence of aggregate quantities {Ct , Lt},
sector-level quantities {Ct(s) ,CHt(s) ,CFt(s) ,Lt(s) ,Yt(s) ,Mt(s) ,Xt(s) ,Y

∗
Ct(s) ,Y

∗
Mt(s)}s, input

use {{Mt(s
′, s) , MHt(s

′, s) , MFt(s
′, s)}s′}s, aggregate prices

{
Wt/Pt , it , Qt , Πt , Π̄t , P̄t/Pt

}
,

sector-level relative prices {Pt(s)/Pt,MCt(s)/Pt,PMt(s)/Pt,PHt(s)/Pt,PCFt(s)/Pt,PMFt(s)/Pt}s,
sector-level inflation {Πt(s) , ΠCFt(s) , ΠMFt(s)}s, input prices {{Pt(s′, s)/Pt}s′}s, and (normal-
ized) multipliers {µt(s)/Pt , µ∗

Ct(s)/P
∗
t , µ

∗
Mt(s)/P

∗
t }s that satisfy the model’s equilibrium condi-

tions in Table 1. This system is 8 + 21S + 4S2 equations in the same number of unknowns.
Table 1: Equilibrium Conditions

Labor Supply C−ρ
t

Wt
Pt

= χLψt

Consumption
Allocation

Ct(s) = ζt(s)
(
Pt(s)
Pt

)−ϑ
Ct

CHt(s) = γ(s)
(
PHt(s)/Pt
Pt(s)/Pt

)−ϵ(s)
Ct(s)

CFt(s) = (1− γ(s))
(
PCFt(s)/Pt
Pt(s)/Pt

)−ϵ(s)
Ct(s)

Euler Equation 1 = Et

[
βΘt+1

Θt

(
Ct+1

Ct

)−ρ (
1+it
Πt+1

)]
Consumer
Prices

1 =

(∑
s ζt(s)

(
Pt(s)
Pt

)1−ϑ)1/(1−ϑ)

Pt(s)
Pt

=

(
γ(s)

(
PHt(s)
Pt

)1−ϵ(s)
+ (1− γ(s))

(
PCFt(s)
Pt

)1−ϵ(s))1/(1−ϵ(s))

Labor Demand Wt
Pt

Lt(s) = (1− α(s))MCt(s)
Pt

Yt(s)

Input Demand

PMt(s)
Pt

Mt(s) = α(s)MCt(s)
Pt

Yt(s)

Mt(s
′, s) = α(s′,s)

α(s)

(
Pt(s′,s)/Pt
PMt(s)/Pt

)−κ
Mt(s)

MHt(s
′, s) = ξ(s′, s)

(
PHt(s

′)/Pt
Pt(s′,s)/Pt

)−η(s′)
Mt(s

′, s)

MFt(s
′, s) = (1− ξ(s′, s))

(
PMFt(s

′)/Pt
Pt(s′,s)/Pt

)−η(s′)
Mt(s

′, s)

Marginal Cost MCt(s)
Pt

= 1
Zt(s)

(
Wt
Pt

)1−α(s) (
PMt(s)
Pt

)α(s)
1



Table 1: Equilibrium Conditions

Input Prices
PMt(s)
Pt

=

(∑
s′

(
α(s′,s)
α(s)

)(
Pt(s′,s)
Pt

)1−κ)1/(1−κ)

Pt(s
′,s)

Pt
=

[
ξ(s′, s)

(
PHt(s

′)
Pt

)1−η(s′)
+ (1− ξ(s′, s))

(
PMFt(s

′)
Pt

)1−η(s′)
]1/(1−η(s′))

Domestic
Pricing

0 = 1− ε

(
1−

MCt(s)/Pt + µt(s)/Pt

PHt(s)/Pt

)
− ϕ(s) (ΠHt(s)− 1)ΠHt(s)

+Et

[
β
Θt+1

Θt

(
Ct+1

Ct

)−ρ ϕ(s)

Πt+1
(ΠHt+1(s)− 1)ΠHt+1(s)

2 Yt+1(s)

Yt(s)

]

Consumption
Import Pricing

0 = 1− ε

(
1−

Qt

PCFt(s)/Pt

MC∗
t (s) + µ∗Ct(s)

P ∗
t

)
− ϕ(s) (ΠCFt(s)− 1)ΠCFt(s)

+Et

[
β

(
C∗
t+1

C∗
t

)−ρ
Qt

Qt+1

ϕ(s)

Πt+1
(ΠCFt+1(s)− 1)ΠCFt+1(s)

2
Y ∗
Ct+1(s)

Y ∗
Ct(s)

]

Input Import
Pricing

0 = 1− ε

(
1−

Qt

PMFt(s)/Pt

MC∗
t (s) + µ∗Mt(s)

P ∗
t

)
− ϕ(s) (ΠMFt(s)− 1)ΠMFt(s)

+Et

[
β

(
C∗
t+1

C∗
t

)−ρ
Qt

Qt+1

ϕ(s)

Πt+1
(ΠMFt+1(s)− 1)ΠMFt+1(s)

2
Y ∗
Mt+1(s)

Y ∗
Mt(s)

]

Complementary
Slackness

min
{
µt(s), Ȳt(s)− Yt(s)

}
= 0

min
{
µ∗
Ct(s), Ȳ

∗
Ct(s)− Y ∗

Ct(s)
}
= 0

min
{
µ∗
Mt(s), Ȳ

∗
Mt(s)− Y ∗

Mt(s)
}
= 0

Market Clearing

Yt(s) = CHt(s) +
∑

s′ MHt(s, s
′) +Xt(s) +

ϕ(s)
2

(
Pt(s)
Pt−1(s)

− 1
)2

Yt(s)

Xt(s) =
(
PHt(s)
PtQt

)−σ(s)
X∗
t (s)

Y ∗
Ct(s) = CFt(s) +

ϕ(s)
2 (ΠCFt(s)− 1)2 Y ∗

Ct(s)

Y ∗
Mt(s) =

∑
s′ MFt(s, s

′) + ϕ(s)
2 (ΠMFt(s)− 1)2 Y ∗

Mt(s)

Θt

(
Ct
C∗
t

)−ρ
Qt = Ξ∑

s Lt(s) = Lt

Monetary
Policy

1 + it = (1 + it−1)
ϱiΠ̄

ω(1−ϱi)
t (Yt/Y0)

(1−ϱi)ϱy Ψt with
Yt =

∑
s P0(s)Yt(s)

Auxiliary
Definitions

ΠHt(s) =
(

PHt(s)/Pt
PHt−1(s)/Pt−1

)
Πt

ΠCFt(s) =
(

PCFt(s)/Pt
PCFt−1(s)/Pt−1

)
Πt

ΠMFt(s) =
(

PMFt(s)/Pt
PMFt−1(s)/Pt−1

)
Πt

Π̄t =
P̄t/Pt

P̄t−1/Pt−1
Πt

P̄t
Pt

=

(∑
s ζ0(s)

(
Pt(s)
Pt

)1−ϑ)1/(1−ϑ)

To construct the piece-wise linear solution to the model, we log-linearize the equilibrium con-
ditions for both the unconstrained and constrained equilibria around the steady state. We normalize
Home prices relative to the domestic price level, and we denote “real” prices with the letter r at-
tached to the price. Further, lower case variables with hats denote log deviations from steady state.
For example, the log deviation in the real wage from steady state is given by r̂wt = ŵt − p̂t, while
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Table 2: Common Equilibrium Conditions for Unconstrained and Constrained Equilibria

Labor Supply −ρĉt + r̂wt = ψl̂t

Consumption
Allocation

ĉt(s) = ζ̂t(s)− ϑr̂pt(s) + ĉt with
∑

s ζ0(s)ζ̂t(s) = 0
ĉHt(s) = −ϵ(s) (r̂pHt(s)− r̂pt(s)) + ĉt(s)
ĉFt(s) = −ϵ(s) (r̂pFt(s)− r̂pt(s)) + ĉt(s)

Euler Equation 0 = EtΘ̂t+1 − Θ̂t − ρ (Etĉt+1 − ĉt) + it − Etπt+1

Consumer Prices 0 =
∑

s

[
ζ0(s)

(
P0(s)
P0

)1−ϑ] [
r̂pt(s) +

1
1−ϑ ζ̂t(s)

]
r̂pt(s) = γ(s)

(
PH0(s)
P0(s)

)1−ϵ(s)
r̂pHt(s)+(1−γ(s))

(
PCF0(s)
P0(s)

)1−ϵ(s)
r̂pFt(s)

Labor Demand r̂wt + l̂t(s) = r̂mct(s) + ŷt(s)

Input Demand

r̂pMt(s) + m̂t(s) = r̂mct(s) + ŷt(s)
m̂t(s

′, s) = −κ (r̂pMt(s
′, s)− r̂pMt(s)) + m̂t(s)

m̂Ht(s
′, s) = −η(s′) (r̂pHt(s′)− r̂pMt(s

′, s)) + m̂t(s
′, s)

m̂Ft(s
′, s) = −η(s′) (r̂pFMt(s

′)− r̂pMt(s
′, s)) + m̂t(s

′, s)
Marginal Cost r̂mct(s) = −ẑt(s) + (1− α(s))r̂wt(s) + α(s)r̂pMt(s)

Input Prices r̂pMt(s) =
∑

s′

(
α(s′,s)
α(s)

)(
P0(s′,s)
PM0(s)

)1−κ
r̂pMt(s

′, s)

r̂pMt(s
′, s) = ξ(s′, s)

(
PH0(s

′)
P0(s′,s)

)1−η(s′)
r̂pHt(s

′) + (1−

ξ(s′, s))
(
PMFt(s

′)
P0(s′,s)

)1−η(s′)
r̂pFMt(s

′)

Consumption
Import Pricing

πFt(s) =
ϵ−1
ϕ(s)

(r̂mc∗t (s) + q̂t − r̂pFt(s)) + βEtπFt+1(s)

Domestic Pricing
for Services

πHt(2) =
ϵ−1
ϕ(2)

(r̂mct(2)− r̂pHt(2)) + βEtπHt+1(2)

Input Import
Pricing for
Services

πMFt(2) =
ϵ−1
ϕ(2)

(r̂mc∗t (2) + q̂t − r̂pFMt(2)) + βEtπFMt+1(2)

Market Clearing

ŷt(s) =
(
CH0(s)
Y0(s)

)
ĉHt(s) +

∑
s′

(
MH0(s,s

′)
Y0(s)

)
m̂Ht(s, s

′) +
(
X0(s)
Y0(s)

)
x̂t(s)

x̂t(s) = −σ(s) (r̂pHt(s)− q̂t) + ĉ∗t
ŷ∗Ct(s) = ĉFt(s)

ŷ∗Mt(s) =
∑

s′

(
MF0(s,s

′)
Y ∗
M0(s)

)
m̂Ft(s, s

′)

Θ̂t − ρ (ĉt − ĉ∗t ) + q̂t = 0∑
s

(
L0(s)
L0

)
l̂t(s) = l̂t

Monetary Policy
Rule

it = ϱiit−1 + ω(1− ϱi)ˆ̄πt + (1− ϱi)ϱyŷt + Ψ̂t

with ŷt =
∑

s

(
P0(s)Y0(s)

Y0

)
ŷt(s)

Auxiliary
Inflation
Definitions

πHt(s) = r̂pHt(s)− r̂pHt−1(s) + πt
πFt(s) = r̂pFt(s)− r̂pFt−1(s) + πt
πFMt(s) = r̂pFMt(s)− r̂pFMt−1(s) + πt

π̄t = πt +
∑

s ζ0(s)
(
P0(s)
P0

)1−ϑ (
r̂pt(s)− r̂pt−1(s)

)
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Table 3: Equilibrium Conditions with Binding Constraints for Goods

Panel A: Only Domestic Constraint Binds
Domestic Pricing πHt(1) =

(
ϵ−1
ϕ(1)

)
(r̂mct(1)− r̂pHt(1)) +

(
ε

ϕ(1)
P0

PH0(1)

)
ˆ̃µt(1) + βEtπHt+1(1)

Input Import
Pricing

πMFt(1) =
(
ϵ−1
ϕ(1)

)
(r̂mc∗t (1) + q̂t − r̂pMFt(1)) + βEtπFMt+1(1)

Domestic
Constraint

ŷt(1) = ˆ̄yt(1) + ln(Ȳ0(1)/Y0(1))

Panel B: Only Foreign Constraint Binds
Domestic Pricing πHt(1) =

(
ϵ−1
ϕ(1)

)
(r̂mct(1)− r̂pHt(1)) + βEtπHt+1(1)

Input Import
Pricing

πMFt(1)=
(
ϵ−1
ϕ(1)

)
(r̂mc∗t (1)+q̂t−r̂pMFt(1))+

(
ε

ϕ(1)
P0

PMF0(1)

)
ˆ̃µ∗t (1)+βEtπMFt+1(1)

Import Constraint ŷ∗t (1) = ˆ̄y∗t (1) + ln(Ȳ ∗
0 (1)/Y

∗
0 (1))

Panel C: Both Constraints Bind
Domestic Pricing πHt(1) =

(
ϵ−1
ϕ(1)

)
(r̂mct(1)− r̂pHt(1)) +

(
ε

ϕ(1)
P0

PH0(1)

)
ˆ̃µt(1) + βEtπHt+1(1)

Input Import
Pricing

πMFt(1)=
(
ϵ−1
ϕ(1)

)
(r̂mc∗t (1)+q̂t−r̂pMFt(1))+

(
ε

ϕ(1)
P0

PMF0(1)

)
ˆ̃µ∗t (1)+βEtπMFt+1(1)

Domestic
Constraint

ŷt(1) = ˆ̄yt(1) + ln(Ȳ0(1)/Y0(1))

Import Constraint ŷ∗t (1) = ˆ̄y∗t (1) + ln(Ȳ ∗
0 (1)/Y

∗
0 (1))

the real price of home output in sector s is r̂pHt(s) = p̂Ht(s) − p̂t, and so on.36 Foreign currency
prices (denoted by stars) are normalized relative to the foreign price level; for example, foreign
real marginal costs are r̂mc∗t (s) = m̂c∗t − p̂∗t . We also define deviations in the value of constraints
from steady state: ˆ̄yt(1) = ln Ȳt(1) − ln Ȳ0(1) and ˆ̄y∗t (1) = ln Ȳ ∗

t (1) − ln Ȳ ∗
0 (1). Finally, to re-

duce the number of potential foreign shocks, we assume that foreign export demand is given by

X∗
t (s) = ϖ(s)

(
P ∗
t

P ∗
t (s)

)−σ(s)
C∗
t , where we treat

P ∗
t

P ∗
t (s)

and ϖ(s) as constants, so x̂∗t (s) = ĉ∗t .
We present the log-linear equilibrium conditions in Tables 2 and 3. Table 2 contains equilibrium

conditions that hold in both unconstrained and constrained equilibria. Table 3 collects equilibrium
conditions that differ across equilibria, depending on which constraints are slack or binding.

A.2 Stochastic Processes

Wecollect log deviations in exogenous domestic and foreign variables – Θ̂t, ζ̂t(1), ĉ∗t , and {ẑt(s), r̂mc
∗
t}s

– into vector F̂t, and we assume that F̂t is a first-order vector autoregressive process, as in F̂t =
ΛF̂t−1 + εt, where Λ is a diagonal matrix of autoregressive coefficients (denoted λx for variable

36For completeness, r̂pt(s) = p̂t(s)− p̂t, r̂pFt(s) = p̂Ft(s)− p̂t, r̂mct(s) = m̂ct(s)− p̂t, r̂pMt(s) = p̂Mt(s)− p̂t,
r̂pMt(s

′, s) = p̂Mt(s
′, s)− p̂t.
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Table 4: Calibration

Parameter Value Reference/Target
ψ 2 Labor supply elasticity of 0.5
ρ 2 Intertemporal elasticity of substitution of 0.5
β .995 Annual risk-free real rate of 2%
ϑ 0.5 Elasticity of substitution across sectors in consumption
ε 4 Elasticity of substitution between varieties
κ 0.3 Elasticity of substitution for inputs across sectors
σ(s) 1.5 Export demand elasticity

ϕ 35.468 To yield first order equivalence to Calvo pricing,
with average price duration of 4 quarters.

x) and εt is a vector of shocks.37 We assume the vector of shocks has a multivariate normal distri-
bution, with var (εt) = Σ having diagonal elements σ2

x for each variable x and zeros off diagonal,
and cov (εt, εt+s) = 0 at all leads and lags (s ̸= 0).

We assume that the constraint for imports of consumption goods is not binding in all peri-
ods. Similarly, we assume that constraints are not binding for services. This leaves Ȳt(1) and
Ȳ ∗
Mt(1) as the remaining constraints.38 We assume they follow autoregressive processes: ˆ̄yt(1) =
ρȳ ˆ̄yt−1(1) + εȳt(1) and ˆ̄y∗t (1) = ρȳ∗ ˆ̄y

∗
t−1(1) + εȳ∗t(1), where γ ∈ (0, 1) and εȳt(1) and εȳ∗t(1) de-

note capacity shocks. We assume the capacity shocks are independent, mean zero normal random
variables, with variances var (εȳt(1)) = σ2

ȳ and var (εȳ∗t(1)) = σ2
ȳ∗ , and cov (εȳt(1), εȳ,t+s(1)) =

cov (εȳ∗t(1), εȳ∗,t+s(1)) = 0 at all leads and lags (s ̸= 0).

A.3 Calibration

We set values for a subset of the structural parameters based on standard values in the literature,
which we collect in Table 4. We use input-output data compiled by the US Bureau of Economic
Analysis to pin down values for steady-state expenditure shares. We report these shares, which re-
flect mean values over the 1997-2018 period, in Table 5, along with their corresponding definitions
in the model.

37We assume that foreign real marginal costs are equal for goods and services: r̂mc
∗
t (s) = r̂mc

∗
t . Because the

services sector is relatively closed, this restriction is unimportant.
38Reliable data on capacity at high frequencies is generally not available, so we cannot include capacity among the

observable variables. Existing data on capacity, such as the series used by the Federal Reserve Board to produce its
G.17 series, are not well suited to our exercise. One reason is that the Federal Reserve’s survey data is collected at an
annual frequency, while we are interested in capacity dynamics at higher frequencies. Further, the capacity estimates
are nearly time invariant at medium term (multi-year) frequencies, which means that capacity utilization mainly reflects
the dynamics of industrial production. A second problem concerns how capacity survey questions are posed to firms.
Specifically, the survey instrument asks firms to report how much they could produce if they had access to all the labor
and materials they need to produce. This question fails to capture key aspects of production that effectively limit true
capacity. For example, firms make predetermined choices about essential labor, material inputs, and other aspects of
the production process that limit their ability to produce today, but this would be not be picked up by the survey.
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Table 5: Steady State Shares

Model and Data Descriptionζ0(1)
(
P0(1)
P0

)1−ϑ
ζ0(2)

(
P0(2)
P0

)1−ϑ
 =

[
0.26
0.74

]
Sector shares in consumption
expenditureγ(1)(PH0(1)

P0(1)

)1−ϵ
γ(2)

(
PH0(2)
P0(2)

)1−ϵ
 =

[
0.80
0.995

]
Home shares in consumption
expenditure by sector[

α(1)
α(2)

]
=

[
0.6
0.4

]
Input expenditure share of gross
output(α(1,1)α(1)

)(
P0(1,1)
PM0(1)

)1−κ (
α(1,2)
α(2)

)(
P0(1,2)
PM0(2)

)1−κ(
α(2,1)
α(1)

)(
P0(2,1)
PM0(1)

)1−κ (
α(2,2)
α(2)

)(
P0(2,2)
PM0(2)

)1−κ
 =[

0.70 0.20
0.30 0.80

] Sector shares in input
expenditure

ξ(1, 1)(PH0(1)
P0(1,1)

)1−η
ξ(1, 2)

(
PH0(1)
P0(1,2)

)1−η
ξ(2, 1)

(
PH0(2)
P0(2,1)

)1−η
ξ(2, 2)

(
PH0(2)
P0(2,2)

)1−η
 =

[
0.77 0.84
0.99 0.98

]
Home shares in input
expenditure[

CH0(1)
Y0(1)

MH0(1,1)
Y0(1)

MH0(1,2)
Y0(1)

X0(1)
Y0(1)

CH0(2)
Y0(2)

MH0(2,1)
Y0(2)

MH0(2,2)
Y0(2)

X0(2)
Y0(2)

]
=[

0.41 0.32 0.16 0.11
0.61 0.07 0.29 0.03

] Domestic output allocation

[MF0(1,1)
Y ∗
M0(1)

MF0(1,2)
Y ∗
M0(1)

MF0(2,1)
Y ∗
M0(2)

MF0(2,2)
Y ∗
M0(2)

]
=

[
0.76 0.24
0.08 0.92

]
Foreign output allocation for
inputs[

PH0(1)Y0(1)
PH0(1)Y0(1)+PH0(2)Y0(2)

PH0(2)Y0(2)
PH0(1)Y0(1)+PH0(2)Y0(2)

]
=

[
0.29
0.71

]
Sector shares in gross output
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A.4 Estimation Procedure

Building onKulish et al. (2017) andKulish and Pagan (2017), we treat the duration of the potentially
binding constraints as an estimable parameter. To explain the method, we first discuss how to solve
the model for given constraint durations, and then we describe the estimation procedure.

A.4.1 Solving the Model for Given Durations

To construct a piecewise linear solution to the model, we take linear approximations of the model
equilibrium for four regimes: the unconstrained regime, a second regime in which only domestic
constraints bind, a third regime in which foreign constraints bind, and a fourth regime in which both
constraints bind. Further, the linear approximations are all taken around the non-stochastic (uncon-
strained) steady state of the model. The solution procedure combines these local approximations
to solve for the policy function.

The linear approximation to the unconstrained system can be written as:

AXt = C+ BXt−1 + DEtXt+1 + Fεt,

where xt is an n× 1 vector of model variables, εt is an l× 1 vector of structural shocks, and A, C,
B, D, and F are conformable matrices determined by the structural equations. If agents expect the
economy to remain unconstrained from date t forward, then standard rational expectations solution
procedures imply that the reduced-form solution is: Xt = J + QXt−1 + Gεt, where J, Q, and G
describe the policy function and model dynamics.

There are three regimes in which one or both constraints bind, and let us index these by r ∈
{1, 2, 3}. Then we can express the linear approximation to the model equilibrium in each case as:

�ArXt = �Cr +�BrXt−1 +�DrEtXt+1 +�Frεt,

where�Ar,�Cr, B̄r, D̄r, and F̄r are conformable matrices that correspond to the structural equations
for each.

We summarize the expected evolution of regimes from a given date t forward by the durations
that the individual constraints are expected to bind, as in dt = [dt, d

∗
t ]. To fix ideas, suppose that

dt = 1, which means that the domestic constraint binds today, and then is expected to be slack
in the future. Further, suppose that d∗t = 0, so the foreign constraint is slack today and in the
future. This implies that the constrained system governs model responses in period t and then the
unconstrained system applies thereafter. Working backwards from the unconstrained solution, then
EtXt+1 = J + QXt, so then �A1Xt = �C1 +�B1Xt−1 +�D1 (J+QXt) +�F1εt, where r = 1 is the
system that applies when the domestic constraint binds and the foreign constraint is slack. Solving
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this linear equation yields the reduced form solution for Xt.
Generalizing this idea, the system will evolve according to:

AtXt = Ct + BtXt−1 + DtEtXt+1 + Ftεt, (22)

where At, Ct, Bt, Dt, and Ft are the structural matrices that apply at date t. Then the piecewise
linear solution is given by:

Xt = Jt +QtXt−1 +Gtεt, (23)

where Jt, Qt, and Gt are determined via the following backward recursion, which is initialized as
starting from the unconstrained solution:

Qt = [At − DtQt+1]
−1 Bt

Jt = [At − DtQt+1]
−1 (Ct + DtJt+1) (24)

Gt = [At − DtQt+1]
−1 Ft.

At this point, it is useful to note that this recursive solution coincides with the recursion em-
ployed by the Dynare OccBin toolkit to obtain policy functions for a given guess about the sequence
of regimes. The Occbin toolkit then proceeds to verify whether the guess about the sequence of
regimes is consistent with model equilibrium, given the current value of the shocks. Put differently,
it solves for endogenous constraint durations. While we do not discuss this second step here, we do
solve for endogenous durations (using Occbin) when we analyze counterfactuals in the model. We
also take the dependence of dt on εt into account in the estimation procedure, with details below.

While Equations 23 and 24 present the model solution for a given anticipated sequence of
regimes, note that the anticipated sequence changes as durations evolve over time. The duration dt
implies a particular sequence of regimes anticipated at dates t+ 1, t+ 2, etc. Given this sequence
and the maintained assumption that agents do not anticipate future shocks, one then uses the recur-
sion above to solve for the associated policy matrices: J (dt, θ) ,Q (dt, θ), and G (dt, θ), where the
notation captures the dependence of these matrices on dt. At date t+ 1, a new value for durations
(dt+1) will be realized, and one then solves the recursion anew to obtain J (dt+1, θ) ,Q (dt+1, θ),
andG (dt+1, θ). And so on. The state (transition) equation of the model then features time-varying
coefficients:

Xt = J (dt, θ) +Q (dt, θ)Xt−1 +G (dt, θ) εt. (25)

When dt = 0 , the unconstrained solution applies, so J (dt, θ) = J (θ) , Q (dt, θ) = Q (θ), and
G (dt, θ) = G (θ) are time invariant.
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A.4.2 Joint Estimation of Durations and Structural Parameters

We assume that a vector of observables (St) are linked to underlying model states via the measure-
ment equation: St = HtXt + νt, where νt is an i.i.d. vector of normally distributed measurement
errors and Ht is a conformable (potentially time-varying) matrix linking states to observables. Us-
ing this state space representation of the model, we can apply the Kalman filter to construct the
Likelihood function L(θ, d| {St}Tt=1), where d = {d}Tt=1 is the sequence of durations.

We put priors over structural parameters and independent priors over durations to construct the
posterior, and then estimate the model via Bayesian Maximum Likelihood. We construct draws
from the joint posterior distribution p

(
θ, d| {St}Tt=1

)
using a Metropolis-Hastings algorithm with

two blocks – one for the structural parameters, which are continuous, and a second for the discrete
duration parameters – as inKulish et al. (2017). We use a uniform proposal density for the durations,
between 0 (unconstrained) and a sufficiently large maximum duration. We discuss the priors in
Section A.4.4 below.

In evaluating proposed parameter and durations draws, we recognize that it is desirable for
posterior estimates of constraint durations to be consistent with agents’ forecasts about how long
constraints will endogenously bind given shocks. To this end, we constrain admissible draws to
enforce this constraint, in an approximate sense. For a given proposed joint parameter (θi) and
duration draw (di), we construct the piecewise linear solution for the model and use the Kalman
filter to obtain smoothed structural shocks {ε̃it}Tt=1 and equilibrium variables {X̃ i

t}Tt=1 given the
data. At each sample period τ ∈ [1, . . . , T ], we then use the piecewise linear solution to project
model outcomes forward given the state and current shock –

(
X̃ i
τ−1, ε̃

i
τ

)
, assuming that there are

no anticipated future shocks.39 We then check for violations of the output capacity constraints. If
projected home or foreign output violates the constraints, then we reject the proposed parameter
draw as inconsistent with model equilibrium. Otherwise, we accept the parameter draw, evaluate
the likelihood, and proceed through the estimation algorithm. Under this procedure, we accept
about 25% of the proposed parameter/duration draws, so the estimation proceeds at reasonable
computational pace.

In this procedure, we reject the proposed draw when it implies that constraints will be violated
in expectation. In turn, we accept draws for which constraints are satisfied. Strictly speaking, we
do not explicitly check whether the duration dτ is equal to the endogenous equilibrium duration
consistent with

(
X̃ i
τ−1, ε̃

i
τ

)
in the model. Nonetheless, our approach provides a good approxima-

tion to model outcomes with endogenously binding constraints. To demonstrate this, we turn to
simulation evidence.

39Recall that in the absence of future shocks, agents anticipate that the model will return to the unconstrained state
over time, where the duration of binding constraints ticks down toward zero in each passing period. We project model
outcomes forward using this expected path for durations.
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Figure 13: Simulation
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Note: Inflation is reported at a quarterly rate in percentage points. The interest rate is in percentage points.

A.4.3 Validating the Estimation Procedure

We provide results for two exercises to evaluate the accuracy of the estimation procedure. First,
using simulated data, we demonstrate that the procedure is capable of identifying latent durations.
Moreover, we show that it accurately recovers the corresponding multipliers on the constraints.
Second, using results from the full estimation of the model with real world data, we compare
smoothed inflation to simulated model results.

Estimation using Simulated Data The first step is to generate simulated data from themodel, for
given parameters.40 Specifically, we draw a set of i.i.d. shocks for all variables over 70 quarters, and
then impose a sequence of large, expansionarymonetary policy shocks for quarters 61 to 69 (the size
of the monetary policy shocks is set to three standard deviations). These shocks are large enough
to trigger the capacity constraints. Since we can identify when the constraints are anticipated to
bind in the simulation, we know the true sequence of durations.

We plot several simulated data series in Figure 13 to illustrate the set up, under both the main-
tained assumption that constraints are potentially binding and the counterfactual assumption that
constraints are slack in all periods. The top two panels contain simulated inflation and the policy
interest rate, while the implied durations for domestic and foreign constraints are recorded in the
bottom two panels. The expansionary policy shocks evidently cause the policy rate to be low in
periods 62 through 70, where inflation more than doubles at its peak relative to a simulation without
capacity constraints.

Treating the simulated series as observable data, we illustrate that our empirical model is capa-
40In contrast to the main quantitative model, we assume there is zero measurement error, so observable variables are

equal to corresponding objects in the simulated data. Further, we set steady-state capacity levels so that there is 4%
excess capacity for both home and foreign goods firms, so that we can trigger binding constraints with demand shocks
alone (i.e., without negative capacity shocks). Remaining parameters are set to the mode of our baseline estimates.
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Figure 14: Likelihood Over Domestic Durations
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(k) Period 70
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Note: The vertical dashed line marks the true duration of the constraint in the simulation for each period. In some
figures, the dot denotes a value of the inverse likelihood that is substantially higher than the other values plotted in
the figure; the dot is located at the maximal value depicted in the figure for visual reference.

ble of identifying the true durations by directly examining model likelihood functions. Setting all
parameters in the state and observation equations (other than durations) to their true values used
to generate the simulated data, we compute the likelihood of the model for different values of the
domestic and foreign durations, at given points in time. For example, setting the duration of the
foreign constraint to its true value in a given period, we then trace out the likelihood over alterna-
tive values of the duration of the domestic constraint. And vice versa. We present the results from
period 60, before the constraints become binding, through period 70, when the domestic capacity
constraint stops binding and the foreign capacity constraint binds for one more quarter.

Figure 14 plots the inverse of the likelihood value across durations of the domestic constraint,
where each panel corresponds to a period and the vertical line identifies the true duration.41 The in-
verse likelihood is minimized at the true values in every quarter, which confirms that the likelihood
procedure we implement is able to discriminate between durations of different length. Importantly,
for periods when the constraint does not bind, the likelihood is maximized at a duration value of
zero.

41Results for the duration of the foreign constraint look similar; while we omit them here, they are included in prior
working paper drafts.

11



Figure 15: Multipliers Capacity Constraints: Simulation vs. Estimation
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(b) Multiplier on the Foreign Constraint
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Turning to estimation of the multipliers, we conduct a full estimation of the model using the
simulated data, in which we estimate both the structural parameters and durations, as in the main
analysis.42 Here we focus on the estimated (smoothed) multipliers on the capacity constraints, as
these play a key role in the framework. In Figure 15, we plot the true paths for the multipliers in the
simulation, along with smoothed multipliers recovered via estimation. As is evident, the smoothed
values of the multipliers match the exact simulation values closely, meaning the procedure does a
good job at pinning down the reduced-form impact of constraints on inflation.

Smoothed vs. Simulated Inflation Drawing on results presented below and in the main text, we
briefly compare smoothed inflation outcomes obtained via our estimation procedure with outcomes
from the full structural model with endogenously binding constraints. This comparison serves to
check that the empirical model with estimated durations replicates the outcomes of the structural
model with endogenously binding constraints. Specifically, suppose we feed the structural shocks
{ε̃it}Tt=1 obtained from our estimation procedure through the model, where structural parameters are
set to their modal values and we use the OccBin procedure to solve for the endogenous duration of
binding constraints in each period following the realization of shocks. We then plot this simulated
inflation series to the smoothed inflation series from our estimation in Figure 16. As is evident, the
two series track each other closely, so we conclude that our approach to capturing endogenously
binding constraints in the estimation routine performs well.

42In this estimation, we allow constraints to potentially bind for two quarters before the first period in which they
actually bind in the simulated data. Further, we use the same priors here as in the baseline estimation.
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Figure 16: Comparison Between Smoothed Inflation and OccBin Simulated Inflation
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Note: Smoothed PCE Inflation is Kalman-smoothed consumer price inflation, where the filter is parameterized using
the modal values of structural parameters and durations from the empirical estimation. Simulated PCE Inflation using
OccBin is obtained by simulating model responses to smoothed shocks.

A.4.4 Priors

The full set of priors for structural parameters is included in Table 6. We use standard priors on
autoregressive persistence of exogenous variables, parameters in the monetary policy rule, elas-
ticities, and the standard deviations of most structural shocks. We set priors on the persistences
of the exogenous capacity shocks that are wider than the priors on the other exogenous variables,
as well as wide (uniform) priors on the standard deviations of the capacity shocks, since these are
nonstandard parameters.

We set uniform priors on measurement errors associated with three inflation series – consumer
price inflation for goods, imported input price inflation, and imported consumption goods price
inflation. Further, looking forward, we will report below that the posterior estimates are pushed to-
ward the boundary of the allowed parameter space for these parameters. The logic for constraining
the measurement error parameters in this way is twofold. First, because our focus is on inflation
outcomes and the role of constraints in driving them, we want to lean heavily on the realized data
here. Second, we estimate the model using both pre-2020 and post-2020 data. As is evident in raw
data series, the post-2020 COVID period features extreme variability in outcomes relative to the
pre-2020 data. One way for the model to make sense of this is to assign very high measurement er-
rors to the data. This is unpalatable from our perspective, as we wish to parse the actual data for this
period. Thus, we effectively constrain the model to treat the post-2020 inflation data as an accurate
representation of latent unobserved model variables. We envision experimenting with alternatives
to this approach (e.g., allowing for different measurement error or shock processes before and after
2020), as thinking about how to model the COVID period evolves.

As noted in the main text, we allow constraints to potentially bind only starting in the second
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quarter of 2020. That is, we put zero mass on positive durations at all dates at/before 2020:Q1,
which can be thought of as a dogmatic prior that constraints were not substantively important prior
to the pandemic. Thereafter in each period, we place equal mass on durations of 0 to 4 quarters,
summing to 60% total (12% on each discrete duration). We place 30% mass on durations of 5, 6,
7, and 8 quarters, again equally spread (7.5% each). The remaining 10% mass is spread equally
over durations 9 through 12, and we place zero mass on durations longer than 12 quarters.

A.5 Estimation Results

In Table 6, we provide the mode, mean, and 5th-95th percentiles for the posterior distributions of
the structural parameters. As noted in the text, we find that domestic and foreign goods inputs
are complements on the production side, while domestic and foreign goods are substitutes in con-
sumption. The Taylor rule coefficient on inflation is near 1.5, which is standard. Interest rates
also depend positively on deviations of output from steady state, and the policy rule features a sig-
nificant degree of inertia. The stochastic processes for shocks generally feature persistence, with
auto-regressive coefficients generally between 0.7 and 0.9. Building on the discussion of measure-
ment error above, we note that posterior estimates for measurement errors on consumer goods price
inflation and import price inflation are pushed toward the boundary of their prior distributions, re-
flecting tension in the model between fitting data before and during the COVID period. For all the
other parameters, posterior distributions are generally well behaved, with single peaks well inside
the allowable parameter space and reasonably tight distributions.

Turning to duration estimates, we plot statistics for the posterior distributions of domestic and
foreign constraint durations in Figure 17. Due to skewness in the distributions, modal values for
the duration (our preferred approach to summarizing the posterior distribution) are below the mean
value in most periods. The time path for the duration estimates mimics the path of estimated mul-
tipliers on the constraints, as reported in the main text.

A.6 Model Fit

In the main text, we presented results on model fit for core inflation series. To evaluate model fit
more broadly, we present data and smoothed values for the remaining observable variables in Figure
18.43 For legibility in the figures, we focus on the 2017-2022 period – the key period leading up to
and through our analysis. The model fits most series well, even capturing the whiplash dynamics
of the data in 2020. The model struggles to replicate data on US labor productivity, particularly
in 2020 for services. Through the lens of the model, this implies that the data contains substantial
measurement error during the pandemic period, which seems plausible to us. More broadly, a more

43We assume the interest rate is measured without error, so it is omitted here.
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Table 6: Prior and Posterior Distributions for Structural Parameters

Prior Posterior
Panel A: Elasticity and Taylor Rule Dist Mean SD Mode Mean 5% 95%
Consumption Armington Elasticity: ι G 1.5 0.25 1.500 1.469 1.124 1.825
Input Armington Elasticity: η G 0.5 0.15 0.549 0.563 0.362 0.796
Taylor Rule Inflation: ω N 1.5 0.12 1.553 1.545 1.354 1.745
Taylor Rule Inertia:αi B 0.75 0.1 0.877 0.872 0.850 0.892
Taylor Rule Output: αy G 0.12 0.05 0.249 0.246 0.173 0.331
Panel B: Stochastic Processes
Preference for Goods: σζ IG 1 2 0.314 0.403 0.192 0.642
Discount Rate: σΘ IG 1 2 3.373 3.487 3.120 3.913
Foreign Costs: σrmc∗ IG 1 2 2.194 2.297 1.955 2.717
Goods Productivity: σz(1) IG 1 2 0.192 0.196 0.128 0.273
Services Productivity: σz(2) IG 1 2 0.205 0.206 0.139 0.282
Foreign Constraint: σȳ∗ U 1 0.58 0.079 0.086 0.041 0.143
Domestic Constraint: σȳ U 1 0.58 0.019 0.025 0.012 0.050
Monetary Policy Shock: σi IG 1 2 0.153 0.154 0.134 0.176
Preference for Goods: ρζ B 0.5 0.15 0.825 0.715 0.424 0.906
Discount Rate: ρΘ B 0.5 0.15 0.727 0.727 0.670 0.780
Foreign Costs: ρrmc∗ B 0.5 0.15 0.922 0.917 0.875 0.952
Goods Productivity: ρz(1) B 0.5 0.10 0.542 0.538 0.371 0.697
Services Productivity: ρz(2) B 0.5 0.15 0.911 0.813 0.434 0.946
Foreign Constraint: ρȳ∗ B 0.5 0.20 0.715 0.683 0.454 0.882
Domestic Constraint: ρȳ B 0.5 0.20 0.914 0.863 0.698 0.957
Panel C: Measurement Error
Goods PCE: σme

pceg IG 1 2 1.014 1.032 0.879 1.194
Services PCE: σme

pces IG 1 2 0.664 0.663 0.558 0.773
Goods PCE Inflation: σme

π(1) U 0.25 .14 0.499 0.497 0.492 0.500
Services PCE Inflation: σme

π(2) IG 1 2 0.155 0.163 0.124 0.213
Imp. Input Goods Expenditure: σme

inp IG 1 2 3.205 3.253 2.929 3.629
Imp. Consumption Goods Expenditure: σme

finp IG 1 2 2.868 2.948 2.659 3.287
Imp. Input Goods Inflation: σme

inpp U 0.75 .43 1.498 1.487 1.463 1.499
Imp. Consumption Goods Inflation: σme

fimp U 0.075 0.043 0.145 0.112 0.033 0.148
Goods Productivity: σme

prod1 IG 1 2 1.151 1.163 1.012 1.324
Services Productivity: σme

prod2 IG 1 2 1.053 1.059 0.930 1.203
Industrial Production: σme

ip IG 1 2 0.930 0.961 0.836 1.100
Aggregate Nominal GDP: σme

nva IG 1 2 0.476 0.474 0.397 0.556
Note: G denotes the gamma distribution, IG denotes the inverse gamma distribution, U denotes the uniform
distribution, B denotes the beta distribution, and N denotes the normal distribution.
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Figure 17: Posterior Distributions for Constraint Durations

(a) Domestic Constraint Durations
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Note: At each date, there is a posterior distribution for constraint durations. Each figure presents the mean, mode, and
interquartile range for this posterior distribution.

sensitive treatment of the impact of lockdowns on the services sector would likely be needed to
match data in the middle quarters of 2020. Nonetheless, the model is able to capture the dynamics
of services inflation well overall, particularly in 2021-2022 when inflation rises.

Turning to “non-targeted data,” we now compare smoothed values for multipliers attached to
the constraints to an external measure of supply chain disruptions. Specifically, we use the Global
Supply Chain Pressure Index (GSCPI), developed by the New York Federal Reserve [Benigno et
al. (2022)], which combines data on transportation costs (sea and air freight rates) with elements of
Purchasing Managers’ Index surveys pertaining to supply chain management frommajor industrial
countries (China, the Eurozone, Japan, United States, etc.). To be clear, this data is not tightly
related to the theoretical construct that we recover from the data; it also is not scaled in way that is
directly comparable to our estimates.44 Further, it is a proxy for global conditions, which doesn’t
distinguish between US-based and foreign supply chain constraints, so we compare it to a weighted
mean of the median multipliers on the domestic and foreign constraints. With all these caveats, we
plot the GSCPI and the weighted mean multiplier in Figure 19. As is evident, both the composite
multiplier and the GSCPI index rise and fall in tandem.

Lastly, in the text, we noted that fluctuations in the reduced-form markup shocks in the Phillips
Curves implied by binding constraints do not behave like standard markup shocks estimated from
historical data. To illustrate this, we introduce an exogenous markup shock into the domestic and

44The raw GSCPI index is reported as deviations from its mean value, in units of the standard deviation
of the series. The NY Fed does not report either the mean or standard deviation, so we cannot compute
log changes in the underlying index. Further, there is no obvious relationship between units attached to the
multipliers – which summarize impacts of constraints on inflation – and units on the GSCPI. Because the
GSCPI is reported at the monthly frequency, we take simple means across three month intervals to form
quarterly values.

16



Figure 18: Data and Smoothed Model Observables

(a) Goods Cons. Expenditure
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(b) Services Cons. Expenditure
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(c) Import Cons. Goods Expendi-
ture
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(d) Import Goods Input Expendi-
ture

-1
00

-5
0

0
50

Pe
rc

en
ta

ge
 P

oi
nt

s

2017 2018 2019 2020 2021 2022 2023

Data
Median Smoothed Value
5th-95th Percentiles

(e) Nominal GDP
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(f) Import Consumer Goods Infla-
tion

-2
0

2
4

6
Pe

rc
en

ta
ge

 P
oi

nt
s

2017 2018 2019 2020 2021 2022 2023

Data
Median Smoothed Value
5th-95th Percentiles

(g) Industrial Production
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(h) Goods Productivity
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(i) Aggregate Productivity
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Note: All data and simulated series are annualized values for de-meaned quarterly growth rates in percentage points.
Data is raw data. We take 1000 draws from the posterior distribution of model parameters, compute the
Kalman-smoothed values for model variables for each draw, and then plot the median smoothed value as the dashed
line. We shade the area covering the the 5% to 95% percentile for smoothed values.
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Figure 19: Comparing the NY Fed GSCPI to the Weighted Mean of Constraint Multipliers
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Note: To make the scale of the GSCPI index comparable to the multiplier, we plot the raw level of the GSCPI index
divided by 50. The Composite Multiplier is computed as 0.75
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weight on the domestic term is 0.75 and the weight on the foreign term is 0.25, which roughly correspond to shares of
total spending allocated to domestic and foreign goods.

foreign price Phillips Curves of the baseline model, and we assume the markup shocks follow an
AR1 stochastic process. We then re-estimate the model including exogenous markup shocks using
only data from 1990:Q1-2019:Q4, under the assumption that constraints are slack throughout this
period. We then filter the data to recover smoothed values for the markup shocks. In Figure 20, we
plot the median smoothed values for the exogenous markup shocks over the period 1990-2020. We
then also plot the median smoothed values for the reduced-form markup shocks implied by binding
constraints during the 2020:Q2-2022:Q4 period, obtained from the estimation above. As is evident,
constraints induce markups shocks that are substantially larger than those that are consistent with
historical data; further, the reduced-form markup shocks are also less persistent than the historical
exogenous markup process.

A.7 Estimated Capacity Levels

In the preceding (main) model, we calibrated the levels of domestic and foreign goods capacity
in steady state. However, we could instead estimate those levels, with an important caveat. The
caveat is that we allow constraints to bind only after 2020 in the estimation. The “steady-state”
capacity level is the level to which capacity reverts in the long run, in the absence of shocks. We
are able to estimate this level conditional on the data in periods in which constraints are potentially
binding. Thus, if we estimate capacity levels, we are attempting to infer the capacity level only
using post-2020 data. Naturally, since constraints were binding for much of this period, plausibly
due to negative shocks that pushed realized capacity down, using only this data will tend to lead us
to estimate a relatively low level for steady-state capacity. And in fact, this is that we find when
we treat capacity levels as parameters to be estimated: steady state goods capacity is roughly 1%
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Figure 20: Exogenous and Reduced-Form (Binding Constraint) Markup Shocks
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(b) Foreign Markup Shocks
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Note: The solid lines depict reduced-form markup shocks induced by binding constraints. The dashed lines are
exogenous markup shocks obtained by estimating the model with exogenous markup shocks and slack constraints
using only data for 1990:Q1-2019:Q4. We take 1000 draws from the posterior distribution of model parameters,
compute the Kalman-smoothed values for model variables for each draw, and plot the median.

above the steady state level of goods output, which is lower than the calibrated value we have used
previously. Nonetheless, this difference in the level of steady-state capacity has little import for
our quantitative assessment, as we noted in the main text.

To demonstrate this, we provide supplemental figures illustrating results from a version of the
model in which capacity is estimated in Figure 21. In Figure 21a, we replicate the counterfactual
in which we relax both the domestic and import goods constraints. In Figure 21b, we replicate
the simulated impact of individual shocks on inflation. To interpret this figure, we note that these
counterfactuals are comparable to those in which we feed individual shocks into the model together
with capacity shocks. The reason is that capacity shocks essentially lower the average capacity level
to near the estimated steady-state capacity level recovered using only post-2020 data. The results
are both qualitatively and quantitatively similar to prior results, which further demonstrates that the
core counterfactual results are largely robust to the level of steady-state capacity.

A.8 Policy Rates Consistent with Taylor Rule

Monetary policy shocks play an important role in accounting for post-pandemic inflation in our
analysis. To illustrate how these shocks manifest, we compare a simulated (counterfactual) policy
rate that conforms to the extended Taylor rule, together with the actual shadow Fed Funds rate,
in Figure 22. For each simulation, we use smoothed inflation (ˆ̄πt) and output (ŷt) to compute the
counterfactual policy rate (̃it), based on the extended Taylor rule: ĩt = ϱiĩt−1 + ω(1 − ϱi)ˆ̄πt +

(1 − ϱi)ϱyŷt , with parameters set based on our estimation. We plot the median value of ĩt across
1000 model simulations in the figure. As is evident, the shadow Fed Funds rate is substantially
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Figure 21: Counterfactual Inflation in Model with Estimated Steady-State Capacity Levels

(a) Aggregate Consumer Price Inflation
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Note: In Figure 21a, we take 1000 draws from the posterior distribution of model parameters (re-estimated for this
application including estimated capacity levels), compute the Kalman-smoothed values for model variables for each
draw, add measurement error to the observables, and then plot the median smoothed value as the solid line. We shade
the area covering the 5% to 95% percentile for smoothed values. In Figure 21b, each series represents the simulated
path of consumer price inflation (quarterly value, annualized) for the indicated subset of smoothed shocks during
2020-2022. See text for definition of the counterfactuals.

lower than the policy rate consistent with the extended Taylor rule policy rate through 2021 and
into 2022, and the gap is closed only near the end of 2022.

B Fiscal Policy Extension

As described in the main text, we extend the model on the household side to introduce two types
of households. Some households are hand-to-mouth consumers, with super-script m. Their log-
linearized labor supply equation and budget constraint are as follows:

−ρĉm + r̂wt = ψl̂mt (26)

Cm
0 ĉ

m
t = (1− τ)

W0

P0

Lm0 (r̂wt + l̂mt ) +
T0
P0

r̂tt. (27)

In the budget constraint, r̂tt is the real transfer received from the government. The parameter T0 is
the nominal value of the transfer in steady state, and τ is the steady-state income tax rate. Remaining
households, denoted by super-script e (for “Euler consumers”), have access to complete financial
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Figure 22: Comparing the Policy Interest Rate to the Extended Taylor Rule
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markets. Their labor supply and consumption decisions are governed by:

−ρĉe + r̂wt = ψl̂et (28)

0 = EtΘ̂t+1 − Θ̂t − ρ(ĉet+1 − ĉet ) + it − Etπ̂t+1 (29)

ĉet = ĉ∗t +
1

ρ

(
q̂t + Θ̂t

)
, (30)

where these are analogous to the conditions for the representative agent in the baseline model. Ag-
gregating across the two types of households, we obtain aggregate labor supply and consumption:

l̂t =

(
Lm0
L0

)
l̂mt +

(
Le0
L0

)
l̂et ĉt =

(
Cm

0

C0

)
ĉmt +

(
Ce

0

C0

)
ĉet . (31)

Lm0 and Le0 are the (time-invariant) measures of consumers of each type, with L0 = Lm0 +Le0 equal
to the total population (normalized such that L0 = 1). Cm

0 and Ce
0 are the levels of consumption

for consumers for each type in steady state, with C0 = Cm
0 + Ce

0 .
Turning to the government, government issues one period bonds and is able to borrow as the

risk-free interest rate (it). The nominal value of government bonds at the end of period t, given by
Bt, evolves according to:

Bt − Bt−1 = [it−1Bt−1 + Tt]− τWtLt, (32)

where Tt is the nominal value of government transfers to the hand-to-mouth households, and τWtLt

is the value of income taxes collected by the government (τ is the tax rate, as above). Defining the
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real stock of debt as RBt ≡ Bt/Pt, then the log-linearized government budget constraint is:

RB0r̂bt = (1 + i0)
RB0

Π0

(
it−1 − πt + r̂bt−1

)
+RT0r̂tt − τRW0L0

(
r̂wt + l̂t

)
, (33)

where r̂bt = ln (RBt/RB0) and r̂tt = ln (Tt/Pt). We assume the government implements a fiscal
rule, to stabilize the real stock of debt (equivalently, the debt to GDP ratio in steady state), and the
rule if provided in the main text. Together with the budget constraint, the fiscal rule ensures that
the debt-to-GDP ratio is stationary, so the usual no-Ponzi scheme condition for government debt is
satisfied.

C Labor Market Extension

This section extends the baseline model to incorporate sticky wages, potentially binding labor mar-
ket constraints, and shocks to the disutility of labor. We now assume there is a unit continuum of
consumers, indexed by j ∈ (0, 1). Consumers are identical, with one exception: each is the monop-
olistic supplier of its differentiated labor services to the market. Further, the amount of labor that
each consumer is able to supply is bound above by Lt, which is exogenous and time varying. Dif-
ferentiated labor services supplied by consumers are costlessly aggregated into a composite bundle
by competitive intermediaries and sold to firms. The labor aggregation technology is given byLt =(∫ 1

0
Lt(j)

(εL−1)/εLdj
)εL/(εL−1)

, where εL > 1 is the elasticity of substitution between differentiated

labor services and the price index for the labor composite isWt =
(∫ 1

0
Wt(j)

1−εLdj
)1/(1−εL)

. Fi-
nally, each consumer pays Rotemberg-type adjustment costs to modify the nominal wage at which
it supplies labor, as in Born and Pfeifer (2020).

Consumer j chooses its consumption, wage, and asset holdings to maximize utility, subject to
its budget constraint, the demand curve for its labor, and the labor supply constraint:

max
{Ct(j),Wt(j),Bt+1(j)}∞t=0

E0

∞∑
t=0

βtΘt

[
(Ct(j))

1−ρ

1− ρ
− Λt

Lt(j)
1+ψ

1 + ψ

]
(34)

s.t. PtCt(j) + Et [St,t+1Bt+1(j)] ≤ Bt(j) +Wt(j)Lt(j)− ϕW
2

(
Wt(j)
Wt−1(j)

− 1
)2
WtLt,

Lt(j) =

(
Wt(j)

Wt

)−εL
Lt, and Lt(j) ≤ Lt,

where ϕW is a parameter governing wage adjustment costs and Λt governs the disutility of labor
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Table 7: Equilibrium Conditions with Binding Constraints for Labor

Panel A: Labor Constraint is Slack
Wage Setting πWt =

(
ϵL−1
ϕW

)
[m̂rst − r̂wt] + βEt (πWt+1)

Marginal Rate of Substitution m̂rst = λ̂t + ψl̂t − ρĉt
Auxiliary Inflation Definition πWt = r̂wt − r̂wt−1 + πt
Panel B: Labor Constraint Binds
Wage Setting πWt =

(
ϵL−1
ϕW

)
[m̂rst − r̂wt] +

(
ϵL
ϕW

P0

W0

)
ˆ̃µLt + βEt (πWt+1)

Marginal Rate of Substitution m̂rst = λ̂t + ψl̂t − ρĉt
Auxiliary Inflation Definition πWt = r̂wt − r̂wt−1 + πt
Labor Market Constraint l̂t =

ˆ̄lt + ln
(
L̄0/L0

)
supply. In a symmetric equilibrium, the first order condition for the wage is:

1− εL

(
1− MRSt+(µLt/Ct−ρ)

Wt/Pt

)
− ϕW (ΠWt − 1)ΠWt

+ Et

[
βΘt+1

Θt

(
Ct+1

Ct

)−ρ
1

Πt+1
ϕW (ΠWt+1 − 1)Π2

Wt+1
Lt+1

Lt

]
= 0, (35)

where µLt is the multiplier on the labor constraint,ΠWt ≡ Wt

Wt−1
, andMRSt =

ΛtL
ψ
t

C−ρ
t

is the marginal
rate of substitution between consumption and labor supply in preferences. Further, the complemen-
tary slackness condition applies:

(
Lt − Lt

)
µLt = 0, with µLt ≥ 0.

Taking a log linear approximation for this equation, we arrive at the wage Phillips Curve pre-
sented in the main text:

πWt =

(
ϵL − 1

ϕW

)
[m̂rst − r̂wt] +

(
ϵL
ϕW

P0

W0

)
ˆ̃µLt + βEt (πWt+1) , (36)

where πWt ≡ ŵt − ŵt−1 = r̂wt − r̂wt−1 + πt is nominal wage inflation, r̂wt ≡ ŵ − p̂t, m̂rst =
λ̂t + ψl̂t − ρĉt with λ̂t ≡ lnΛt − lnΛ0, and ˆ̃µLt ≡ln µ̃Lt − ln µ̃L0 where µ̃Lt ≡ 1 + (µLt/Ct

−ρ) is a
function of the multiplier on the labor constraint.

To define equilibrium in this model, we modify the equilibrium conditions from Tables 2 and
3 as follows. First, we drop the “labor supply” condition from the baseline model, as labor supply
is no longer determined by equating the marginal rate of substitution to the real wage. Second,
we add the equilibrium conditions in Table 7, where Panel A corresponds to an equilibrium when
labor constraints are slack, and Panel B corresponds to the case when they are binding. The new
endogenous variables in the equilibrium system are: {πWt, m̂rst}when the labor constraint is slack,
and

{
πWt, m̂rst, ˆ̃µLt

}
when the labor constraint binds. Combined with the goods constraints, this

defines eight model regimes with different combinations of binding and slack constraints.
Turning to quantitative implementation of this model, we start by describing new calibrated
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parameters. We set ϵL = 21, following Christiano et al. (2005). We then choose ϕW so that the
slope of the wage Phillips Curve is equivalent to a Calvo model with wage adjustment parameter
0.4, when ϵL = 21. This Calvo wage adjustment target is taken from Fitzgerald et al. (forthcoming),
who estimate it based on state-level data. The implied slope of the wage Phillips Curve is then about
0.02, which is relatively flat. We calibrate the level of the labor constraint (L̄0) to be 1% higher
than steady state labor supply. Because the actual level of the constraint at a given point in time is
a realization of a stochastic process, results are not sensitive to this value.

We assume the disutility of labor evolves according to λ̂t = ρλλ̂t−1+ελt, where var (ελt) = σ2
λ

and cov (ελt, ελt+s) = 0 for s ̸= 0, and we estimate ρλ and σλ. Further, we assume that the
labor constraint is subject to shocks, such that ln L̄t − ln L̄0 ≡ ˆ̄lt = εl̄t with var (εl̄t) = σ2

l̄
and

cov
(
εl̄t, εl̄,t+s

)
= 0 for s ̸= 0, and we estimate σl̄.

We assume observables (aggregate hours worked and real wage growth) aremeasuredwith error
and estimate the variance of the measurement errors. We also re-estimate all the same structural
parameters and stochastic processes using this version of the model. To do so, we assemble data
on aggregate hours worked and real wage growth from raw data provided by the US Bureau of
Labor Statistics.45 To construct real wage growth, we use hourly compensation data for the non-
farm business sector to proxy for nominal wage growth (FRED series id: COMPNFB), taking
log growth rates of that quarterly index. We then deflate this nominal wage growth using the
aggregate PCE price index, used in prior sections. To build an aggregate hours series, we combine
several series. We use average weekly hours of production and nonsupervisory works in the private
sector (FRED series id: AWHNONAG) to proxy hours per worker. We then compute the ratio
of employment (FRED series id: CE16OV) to population (FRED series id: CNP16OV), were
we smooth population estimates by taking means within two-year moving windows in order to
eliminate jumps due to data revisions. We then multiply average weekly hours by the employment
to population ratio, take logs of that index, and compute deviations from the sample mean of the
index over the 1992:Q2 to 2019:Q4 (the pre-COVID sample).

45We retrieve these data from the FRED database, with FRED codes in the text, at https://fred.stlouisfed.
org/.
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