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1 Introduction

Nominal rigidities are a major determinant of the response of the economy
to exogenous shocks and in particular to monetary policy actions. This points
to the need of a better understanding of the pricing behavior of firms and/or
outlets. Uncontroversially, a microeconometric approach should be well suited
to shed light on such an issue.

Early empirical microeconomic analyses of nominal rigidities had to rely on
rather small and restricted datasets (e.g. see Cecchetti, 1986, Kashyap, 1995).
Interest in the use of panel data about microeconomic prices at the firm or
outlet level has sharply increased in the very recent period, in part due to
availability of larger datasets. Bils and Klenow (2002) provide results on price
stickiness for a major part of the US CPI categories. As regards the euro area,
some stylized facts characterizing prices rigidity in several countries have been
produced by Aucremanne and Dhyne (2004), Baudry et al. (2004), Dias et al.
(2004), Veronese et al. (2004) 1 . The average duration of price spells in the euro
area appears to be around about 3 quarters . However, there exist a great deal of
heterogeneity, in particular across different types of goods. Prices in the services
sector last longer (about one year) while those in the energy and food sectors
change more frequently. Moreover, prices appear to change more frequently in
large outlets such as supermarkets than in more “traditional” corner shops.

The present paper pursues a further step in microeconometric analysis of
prices rigidity by looking at the empirical relevance of the existing theoretical
models of pricing behaviors such as those proposed by Taylor (1980), Calvo
(1983), Sheshinski and Weiss (1983), or Dotsey, King and Wolman (1999). In
order to estimate models that “formalize” the predictions of those theoretical
models in terms of statistically observable variables, the paper proceeds by
focusing on the hazard function for price changes. The hazard function approach
has been widely used in unemployment analysis, but so far, to our knowledge,
rarely employed to characterize price rigidity.

The aim of this paper is thus to estimate duration models for explaining
the duration of consumer prices at the microeconomic level and to test whether
those estimates are consistent with the predictions from the theoretical mod-
els of pricing behavior such as those proposed by Calvo, Taylor and others.2

We make use of a large dataset consisting of price quotes in French outlets
over the period July 1994 to February 2003. We show that, not accounting
for heterogeneity, the unconditional empirical hazard functions are decreasing,
thus being in contradiction with the theoretical predictions. However, taking

1 see Dhyne et al. (2004) for a summary
2Related papers that follow the same approach are Alvarez et al. (2004), Aucremanne and

Dhyne (2004,b), Dias et al. (2004)
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account of heterogeneity, results are more in line with an “amended” form of
Calvo’s model.

2 Theoretical patterns of the hazard function

for price changes

This section provides a short review of the implications of the main models
of price setting behavior used in monetary economics (see e.g. Taylor, 1998 ,
and Burriel et al., 2004 for more detailed discussions) in terms of the hazard
function for price changes. In our context, the hazard function is the probability
of adjusting prices conditional on the elapsed duration since last price change.

Models of price rigidity can broadly be classified into two categories: time-
dependent and state dependent models. Time dependent models assume that
prices changes take place at fixed or random intervals. One prominent model
is Taylor (1980)’s staggered contracts model that has been used to describe
both the price and wage adjustment patterns. The model assumes that prices
and wages are negotiated for fixed periods, say one year. As a consequence,
the hazard function should be zero for the first quarters and exhibit one spike
with value one at the duration of the contract. One may expect several spikes
in the hazard function, if contracts of different lengths coexist in the economy.
A widespread alternative in the monetary policy literature is Calvo’s model.
In this model, each firm has a constant probability of changing its price. As
a consequence, the hazard function is flat. A variant that encompasses both
Taylor’s and Calvo’s schemes is the truncated Calvo model, in which there is
a maximum duration for prices. The hazard is flat up to this maximum value,
then is equal to one for this maximal duration (see Wolman, 1999).

State-dependent models predict on the contrary that the probability of a
price change varies according to the state of the economy. State-dependency
with infrequent price change typically emerges from menu cost models. Such
models imply that a firm will change its price if the (absolute) deviation of its
current price from the optimal price is larger than the menu cost, i.e. the fixed
cost of changing price. Sheshinski and Weiss (1983) have analyzed this model.
The probability of a price change is predicted to decrease with the size of the
menu cost, while the size of the price change will increase with that of the menu
cost. Generally, the probability of a price change is predicted to increase with
trend inflation. More recently Dotsey, King, and Wolman (1999) have proposed
a model that generalizes Calvo’s model by incorporating state-dependent pricing
into a truncated Calvo model. In their model, firms face a random menu cost.
Only the firms with relatively low menu costs will choose to adjust. The hazard
rate will be an increasing function of time since the previous change, since firms
with prices set a long time ago are more likely to observe relative price in excess
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of the menu cost. An higher steady state inflation will lead to more rapid erosion
of relative prices and to hence to a steeper hazard function.

It is to be noted that one common feature of all those price models is that the
hazard function is a non-decreasing function of elapsed duration (except perhaps
for spikes in the hazard function). Also note that one widely used model of price
setting is not considered here, namely Rotemberg’s (1982) quadratic adjustment
cost model. Indeed, this model predicts frequent price adjustments of a small
magnitude. Such a pattern is at variance with the evidence of lumpy adjustment
typically found with micro data in most sectors .

3 The econometric modelling of price spells

As mentioned just above, a way to discriminate among the different theoretical
models of pricing behavior and to assess their respective empirical relevance is
to consider the shape of the hazard function of price changes, i.e. the probability
of occurrence of a price change after a given duration has elapsed. The approach
we adopt here is that of duration models. Indeed, from elementary price quotes
of the French CPI we are able to compute durations, i.e. the length of time
during which a price was not changed. We start this section by summarizing
the duration analysis useful for the present paper.3

An alternative but related approach would be to model the probability of
price change, using variants of the logit or tobit model, in the vein of Cechetti
(1986). See Aucremanne and Dhyne (2004) for the implementation of such an
approach. One advantage of duration analysis is that, despite the discrete nature
of observations, we are able to use continuous time duration models and allow
for the fact that price changes do occur at any point in time during a month.

3.1 The econometric analysis of durations: a reminder

Let us consider a price spell i, beginning at time ti0 = 0 and lasting until

time ti,end where the date ti,end is not known exactly, although it is observed

to be located somewhere between dates t − 1 and t. For the convenience of

presentation, we shall consider that dates t and t− 1 correspond to the end of

months t and t − 1 respectively: then, all what we know is that the price spell

has lasted more than t − 1 months and at most t months. Then, we aim at

characterizing the probability for a price change to occur after some time has

elapsed since the previous price change.

3See Kiefer (1988) and Lancaster (1997) for comprehensive expositions of duration analysis.
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To do so, let us first consider that there is no censoring4 and define the prob-
ability for a spell to last at least t − 1 months (the so-called survivor function)
as:

Pr(T ≥ t− 1) = S(t− 1)

= 1− F (t− 1)

where F (.) and S (.) are the cumulative density function and the survivor func-
tion of T respectively. Then, the probability that a spell will end during month
ti is given by

Pr(t− 1 < T ≤ t) = F (t) −F (t− 1)

= S(t− 1) − S(t).

What we are interested in is the hazard function, i.e. the conditional prob-
ability for a spell to end during month t, given it was still on-going at the end
of t− 1 :

h(t) = Pr(t− 1 < T ≤ t | T > t− 1)

=
Pr(t− 1 < T ≤ t)

Pr(T > t− 1)

=
S(t− 1) − S(t)

S(t− 1)

= 1−
S(t)

S(t − 1)
.

Because of the relationship between the survivor function and the cumulated
hazard (ln(S(t) = −H(t), e.g. see Kalbfleisch and Prentice (2002)), this can be
written as

h(t) = 1− exp(−H(t)) / exp(−H(t− 1))

= 1− exp[H(t)−H(t− 1)]

= 1− exp(−

∫
t

t−1

λτ dτ )

= 1− exp(−γ(t))

where λτ is the instantaneous hazard rate, which is equal, in a continuous time

setting, to the risk of a spell to finish at time τ . h(t) is the probability for a

price spell to last t months, i.e. to have finished at any point in time τ between

the beginning and the end of that month. It must be recognized here that the

parameters characterizing the baseline hazard λ are not identified here, unless

we make some assumption about the behavior of this baseline hazard over the

4The question of censoring will be delt with in the next section.
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period ]t−1, t] . The simplest assumption is to consider that it is constant over

such an interval: λτ = λt, ∀ t − 1 < τ ≤ t, although it can vary over different

intervals, indexed by t5 . Then,

h(t) = 1− exp(−

∫
t

t−1

λτ dτ )

= 1− exp(−λt)

Accounting for time discretization, the probability for a spell to last tmonths

is then given by

f(t) = Pr(t− 1 < T ≤ t )

= h(t) × S(t− 1)

= [1− exp(−λt)]× exp[−H(t− 1)]

= [1− exp(−λt)]× exp[−
t−1∑

s=1

λs]

since

ln(S(t − 1)) = −H(t− 1)

= −

t−1∑

s=1

λs.

The general form of the log-likelihood, assuming that there is no censoring, is

written as

lnL =
N∑

i=1

ln(fi(ti))

=
N∑

i=1

[ln(hi(ti) + ln(Si(ti − 1))]

=
N∑

i=1

[ln(hi(ti)−Hi(ti − 1))]

where λi(ti) is the hazard rate of spell i, Si(ti) the survivor function and Hi(ti−
1) the cumulated hazard function. Given the assumption that the hazard func-

tion is piecewise constant over monthly intervals (λτ = λt,∀t − 1 < τ ≤ t, t = 1, ..., T
max

),
this log-likelihood can be written as:

lnL =
N∑

i=1

[ln(1− exp(−λt)) −
ti−1∑

s=1

λ
s

]

5This amounts to specify a piecewise constant hazard model.
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However, it may be unduly restrictive to assume the hazard to be constant

over all individuals, irrespective of their observed or unobserved characteristics.

One has indeed to worry about the possible existence of heterogeneity across

spells.

3.2 Accounting for heterogeneity

There are many reasons that can explain why the duration of price spells can

vary across products, outlets and over time. Indeed, outlets have their own

pricing policy, depending on the type of product they sell, on the characteristics

of their customers and on the competition with other retailers. Differences in the

evolution of costs in different sectors and in the production and merchandizing

technologies may also contribute to explain differences in the pricing behaviors

across different types of goods.

3.2.1 Observed heterogeneity with time-constant covariates.

Examples of such possible covariates are the type of good or service (e.g. food,
gasoline, clothes, services, etc.) or the outlet category (hypermarket, general
store, traditional “corner shop”, etc.) which can be seen as intrinsic character-
istics of the spell. In our case, prices of some categories of products are assumed
to last longer than others, whatever the type of outlet (for example, prices of
energy do not last very long while, on the contrary, prices of services last often
around one year). Similarly, some outlets are assumed to set prices for longer
periods than others, for any product they sell. Indeed, it seems that hypermar-
kets and supermarkets change their prices more frequently than smaller shops.
Then, it seems reasonable, at least in a first step of the analysis, to consider that
those characteristics affect the hazard at different durations in a proportional
way. The instantaneous hazard rate is assumed to be :

λi(ti) = λti
exp(ziβ).

Then,

hi(ti) = 1− exp(−

∫
ti

ti−1

λi(τ ) dτ )

= 1− exp(−

∫
ti

ti−1

[λτ exp(ziβ)] dτ )

= 1− exp

[
− exp(ziβ)×

∫
ti

ti−1

λ
τ
dτ

]

= 1− exp(−λti
)× exp(− exp(ziβ))
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and

fi(ti) = hi(ti)× Si(ti − 1)

= [1− exp(−λti
)× exp(− exp(ziβ))]× [− exp(ziβ)

ti−1∑

s=1

λs].

3.2.2 Observed heterogeneity with time-varying covariates

In the case where the covariates are time-varying, one has to take into account
their path over the course of the spell, since this is the full “history” of those
variables that may explain the end of the spell. In our case, this is particularly
clear when one thinks about inflation. It is the cumulated inflation at each point
in time during the spell that creates an increasing gap between the unchanged
price of a product in a given outlet with either the general price level and/or
the general price of the same product in other outlets as a whole or in direct
competitors of the outlet. Taking inflation at the end of the spell only would
create a bias since longer spells would be systematically associated with high
inflation.

There are a few other time-varying covariates that we should include in our
models; namely, we include dummies for changes in the VAT rate as well as for
the Euro cash change-over. Then, assuming the hazard to be

λi(ti) = λti
exp(zi(ti)α).

one gets:

hi(ti) = 1− exp

[
−

∫
ti

ti−1

λi(τ ) dτ

]

= 1− exp

[
−

∫
ti

ti−1

λτ exp(zi(τ )α) dτ

]
.

Then, given that λ(τ ) as well as the variables zi(τ ) do not vary over the

time interval ]t − 1, t] : zi(τ ) = zit, λi(τ) = λt, ∀ t− 1 < τ ≤ t, one can write

hi(ti) = 1− exp(−λti
) × exp(− exp(zitα))

and

fi(ti) = hi(ti) × Si(ti − 1)

= [1− exp(−λti
)× exp(− exp(zitα))]× [−

ti−1∑

s=1

λs exp(zisα)].
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3.2.3 Unobserved heterogeneity

We have assumed until now that the heterogeneity across price spells can be

fully captured by covariates, either constant or time-varying. It may also be the

case that there are other factors affecting the duration of spells in a systematic

way but which we do not observe. It may then be worth it to account for such

unobserved heterogeneity. The most usual way to do it is to assume that this

heterogeneity factor has a particular distribution, of which we estimate the

characteristic moments. Consider that the hazard is given by

λi(ti) = θi λti
exp(ziβ + zi(ti)α)

where θi is a random variable independent of zi and zi(ti). Then, the survivor
function accounting for unobserved heterogeneity is:

S(ti | θi) = S(ti)
θi .

To estimate the model, we have to “integrate out” this heterogeneity term, given

its distribution µ(θ):

S(ti) =

∫
∞

0

S(ti)
θiµ(θ) dθ.

Assuming that θ is Gamma distributed with mean 1 and variance σ2 we get:

S(ti) = [1− σ
2 ln(S(ti)]

−1/σ2

= [1 + σ
2
H(ti)]

−1/σ2
.

Then, the log-likelihood can be written as (e.g. see Meyer (1990)):

lnL =
N∑

i=1

ln(fi(ti))

=
N∑

i=1

[ln(Si(ti − 1))− ln(Si(ti))]

=
N∑

i=1

ln([1 + σ
2
H(ti − 1)]−1/σ

2

) −
N∑

i=1

ln([1 + σ
2
H(ti)]

−1/σ2)

=
N∑

i=1

ln([1 + σ
2

ti−1∑

s=1

λs exp(zisα+ ziβ)]
−1/σ2)]

−

N∑

i=1

ln([1 + σ
2

ti∑

s=1

λs exp(zisα+ ziβ)]
−1/σ2)]
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3.3 Accounting for censoring

Censoring is a major issue when analyzing durations in general as in our partic-
ular context. Indeed, there are many reasons that explain why our observations
of prices are censored:

First, the observation period is restricted by the database availability. This
makes it very likely to observe product prices in a given outlet after the current
price of the product was actually set and/or before that price ceases to exist.
Indeed, the probability that the first spell in a price trajectory is left-censored
is high, as is the one of the last spell being right-censored.

Second, the sampling of products and outlets by the statistical agency is also
likely to generate some censoring. Indeed, the statistical institute may decide
to discard a specific product from the “representative” CPI basket due to
changes in technology or consumer behavior that shrink the expenditure share
on these products (e.g. black and white TV sets) although they may still be sold
in outlets. Then, the last price spell of such a product will be right-censored.
Conversely, products may be included in the CPI basket and their price observed
after they were actually available for consumers. This will generate left-censoring
of the price spell.

Third, outlets and firms may decide to stop selling a product which price was
followed by the statistical agency. Then, the procedure which is often adopted
by statistical agencies in charge of computing the CPI consists in replacing the
“old product” by another one, either a close substitute in the same outlet or the
same product but in another outlet. It is then very likely that the price of the
“replacing product” was set before the first price observation for this product.
We then have left-censoring of the price spell for this new product.

Individual price data also feature attrition, i.e. individuals dropping out of
the sample. Two sources of attrition are the following:

First, products have life-cycles: “old products” disappear from the market
and “new ones” appear. The time-series of prices observations for a specific prod-
uct is very likely to be interrupted at some point during the observation period.
In this respect, it is important to precisely identify when the replacement of a
product by a close substitute occurs, as one can wonder about the correct inter-
pretation of the price change generally associated with this replacement. Note
that in the dataset used in this paper, product replacement is identified by a
specific flag (at the end of some price trajectories). Hence product replacements
can be distinguished from pure price changes.

Second, outlets or firms may close, which obviously interrupts the time-series
of prices observations for all products sold by the outlet or the firm.
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In the present context, attrition is considered as a ”normal” spell ending and
thus, no censoring is assumed to characterize such spells.

Thus, in our context, we have right censored spells, left censored spells as
well as both right and left-censored spells. In the case or right censoring, things
are rather simple. Indeed, what we know about a right-censored spell at time ti

is that its (unobserved) duration will be at least of ti months. In other words,
the spell is still on-going at the end of the (ti − 1)th period. Thus, we have, for
right censored spells:

g(ti) = S(ti − 1)

Then, defining a dummy variable δi taking value 1 when the spell is uncen-
sored, one can write the log-likelihood as (e.g. see Meyer (1990)):

lnL =
N∑

i=1

ln(fi(ti)) +
N∑

i=1

δi ln(gi(ti))

=
N∑

i=1

ln([1 + σ2
ti−1∑

s=1

λs exp(zisα+ ziβ)]
−1/σ2)]

−δi

N∑

i=1

ln([1 + σ2
ti∑

s=1

λs exp(zisα+ ziβ)]
−1/σ2)]

Many of our spells are also left-censored or both right and left-censored (i.e.
the price spell of the product actually begins before the statistical agency starts
to observe the product). As shown in the appendix, the statistical treatment of
such spells induces more difficulties than accounting for the sole right-censoring.
However, the sample we have is made of thousands of spells for similar products
in quite similar outlets - i.e. we have many spells that concern a given particular
product sold in a given type of outlet (e.g. in small corner grocery shops, or in
supermarkets). Discarding the left censored spells will result in a substantial loss
of information nor produce a selection bias as the left-censoring is independent
of the duration of price spells. Contrarily to what may happen in the context
of unemployment duration studies for example, left-censoring in our case does
not concern a particular sub-population with specific characteristics6 . Then,
discarding those left-censored spells does not lead to a selection bias as there
are many other uncensored spells relating to the same products/outlets in the
sample. After having checked for this with a small simulation study, we have
then decided to discard left-censored (and right and left-censored) spells from
our econometric sample.

6The only exception is the category of clothes where there are very specific pricing and
renewing of items policies that are not independent from each other: changes in prices are not
necessarily frequent but changes in the items often occur every 6 months (the “winter/summer
collection pattern” is important for this particular group of products.
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Finally, given that some of our spells have quite long durations, we have
decided to impose a constant hazard beyond the 25th month. This choice cor-
responds to a length of more than 2 years and only about 5% of our spells are
concerned. Although this is not negligible, it appeared very difficult to get satis-
factory estimates of specific duration parameters beyond this point.7 Then, the
log-likelihood function can be split in four sub-groups of observations:

1) G1: Uncensored spells with length ti less than T max = 25.

2) G2: Uncensored spells with length ti equal to or longer than T max = 25.

3) G3: Right-censored spells with length ti less than T max = 25.

4) G4: Right-censored spells with length ti equal to or longer than T max =

25.

Then, the log-likelihood we have maximized can be written as

lnL =

∑

i∈G1

fi1(ti) +
∑

i∈G2

fi2(ti) +
∑

i∈G3

gi3(ti) +
∑

i∈G4

gi4(ti)

with

fi1(ti) =
N∑

i=1

ln([1 + σ2
ti−1∑

s=1

λs exp(zisα+ ziβ)]
−1/σ2)]

−

N∑

i=1

ln([1 + σ
2

ti∑

s=1

λs exp(zisα+ ziβ)]
−1/σ2)]

fi2(ti) =
N∑

i=1

ln([1 + {σ2
T max−1∑

s=1

λs exp(zisα+ ziβ)}

+ {σ2(ti − Tmax +1).λT max exp(ziT maxα+ ziβ)]
−1/σ2 )]

−δi

N∑

i=1

ln([1 + {σ2
T max∑

s=1

λs exp(zisα+ ziβ)}

+ {σ2(ti − Tmax).λT max exp(ziT maxα+ ziβ)]
−1/σ2

gi3(ti) =
N∑

i=1

ln([1 + σ
2

ti−1∑

s=1

λs exp(zisα+ ziβ)]
−1/σ2)]

7 In fact, this difficulty occurred even sooner in some cases where, for some sub-groups in

our sample, spells longer than one year may be very rare. This is the case for energy goods

for example as well as for spells correponding to sales or promotions.
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gi4(ti) =
N∑

i=1

ln([1 + {σ2
T max−1∑

s=1

λs exp(zisα+ ziβ)}

+ {σ2(ti − Tmax + 1).λT max exp(ziT maxα+ ziβ)]
−1/σ2)].

The advantage of this specification is that it can fit almost any empirical

hazard. Moreover, it is quite easy to implement a test of the theoretical models

by testing:

- Calvo’s model: λ1 = λ2 = λ3 = ... = λT = λT+1

- Truncated Calvo’s model: λ1 = λ2 = λ3 = ... = λT and λT+1 = 1 if the

maximum duration of prices is set at T + 1
- Taylor’s model: λ1 = λ2 = λ3 = ... = λT = λT+1 = 0 except λn if contracts

last for n periods.

Obviously, it is very unlikely that any of these models will fit the data as

there are strong heterogeneities across agents in their pricing behavior. A well-

known consequence of such an heterogeneity is that, by not accounting for such

an heterogeneity, one can estimate a decreasing hazard function while in fact,

there are 2 groups of individuals with both a constant hazard but which is set

at different levels.

4 The duration of price spells in France: basic

facts

The data used for our econometric analysis, i.e. the price quotes from the CPI, is
quite original, both as regards its contents and its size. We briefly document the
data below, referring to Baudry et al. (2004) for additional details and evidence.

4.1 Dataset: 13 millions price quotes from the French

CPI.

Data are monthly price quotes from the CPI collected by the INSEE (Institut
National de la Statistique et des Etudes Economiques). The methodology of
data collection is described in INSEE (1998). The sample contains CPI records
from 1994:7 to 2003:2. These data cover around 65% of CPI (Fresh foods, Rents,
Purchase of cars, and Administred prices are not covered). The number of price
quotes is for the full sample around 13 million observations, and around 9.7 for
the pre 2001 period. In Appendix 1 we document how some data issues were
dealt with (euro cash-changeover, missing prices, etc.).

The breakdown of records by sectors is presented in Table 1.
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Table 1: Number of price records by category of goods/services
Type of good Number % in weight in weight

of obs. database database in CPI
Unprocessed food 1,655,484 12.51 9.87 8.69
Processed food 2,443,456 18.47 15.51 11.93
Non-energy manuf.goods 6,496,559 49.10 36.75 32.12
Energy 345,512 2.62 7.87 8.39
Services 2,246,977 16.98 30.00 38.87
Unidentified (out of CPI) 42,351 0.32 - -
Total 13,230,339 100.00 100.00 100.00

Note: The weights in the database are obtained by summing up the weight of the elemen-

tary groups covered in the database. The last column reports the weight of each subindex in

the overall CPI, including items (e.g. rents) not available in the data set.

With each individual record the information recorded is : the price level,
an individual product code (outlet and product category), the year and month
of record, a “type of record” code (indicating whether the price record is a
regular one, whether it correspond to sales, whether the item was temporarily
unavailable so that the price was replaced, etc.).

The structure of the database as regards the type of outlet is given in Table
2, while that according to the nature of the price quote is given in Table 3.

Table 2: Price records by type of outlet

Type of outlet Number of obs. % in database
Hypermarket 2,629,270 19.87
supermarket 1,802,583 13.62
hard discount store 155,483 1.18
convenience store 317,233 2.41
general store 483,165 3.65
department store 483,981 3.66
large-area specialist 1,679,584 12.69
traditional corner-shop 3,611,926 27.30
market 62,257 0.47
services 1,896,128 14.33
others 108,729 0.82
total 13,230,339 100.00
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Table 3: Breakdown of price records by type of observation
Type of observation Number of obs. % in database
Normal observation 9,463,849 71.53
Sales 100,584 0.76
Temporary rebate 254,542 1.92
Temporary replacement 129,687 0.98
Price not observed (outlet closed, etc.) 1,405,579 10.62
New product / outlet 121,549 0.92
Replacing product 509,223 3.85
Replaced product 499,008 3.77
Quarterly observation 746,318 5.64
total 13,230,339 100.00

”Missing” prices appear not to be uncommon. Those unobserved prices are
worth being precisely considered as their treatment can significantly alter the
duration of price spells. In that respect, we have adopted an approach which
differs from that of the statistical institute. When a product is temporarily
absent from an outlet (or when an outlet is temporarily closed), INSEE evaluates
the missing price by applying to the base price the average increase of prices
of the same kind of products in the same area. Then, although this approach
is perfectly suited for computing an aggregate price index, such a evaluation
cannot be regarded as a proxy for the unobserved price.

Our approach then differs from that of INSEE and can be described as
follows: temporarily unobserved prices (dated t) are replaced by the previous
price when that previous price (dated t-1) is equal to the subsequent price
(dated t+1). More formally when Pj,t,k is a ”pseudo-observation” (in fact has
been replaced) and that Pj,t−1,k =Pj,t+1,k,we set Pj,t,k = Pj,t−1,k.

4.2 Some stylized facts

A set of descriptive statistics about price spells is reported in Table 4 .
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Table 4: Observed durations of price spells
Population All price spells Price spells Price change

averaged by frequency
elementary measure
group of goods of duration

Mean 5.28 7.14 8.38
Median 3 5.90 6.19
Min 1 1.22
25thpercentile 1 4.54 4.30
75thpercentile 7 9.10 11.60
Max 104 33.93
Standard deviation 6.73

Number of obs. 2377682 1328 104

The number of observed trajectories (one trajectory is a sequence of prices
of one product in one given outlet) is K = 754,220. The average length of
an observed trajectory is L = 16.65 months. The average number of spells per
trajectory is 3.15 so the overall average unweighted duration over all price spells
is evaluated to be T = 5.28 months. The distribution around this mean is very
asymmetric : the median duration of spells is 3 months. There is a very high
mode at duration 1 month. Also there is a very long right-side tail with 25% of
spells lasting more than 7 months.

The average duration clearly over-weights the products with short dura-
tions (since for a given trajectory length, a larger number of spells is observed).
Consolidating first at the elementary group level, and using the CPI weights to
aggregate, the weighted average duration of price spells is 7.14months. Restrict-
ing to the “pre-euro” period (pre-2001) does not modify results much, yielding
a weighted average duration of 7.07 months.

One can also get an indirect measure of the duration of price spells by using
the relationship between durations and the frequency of price changes. The
weighted average frequency of price changes over the baseline period is 0.189.

The estimator based on inverting the weighted average frequency is T
F,H

=

(1/F
W
) = 5.29, or under the “continuous -time assumption” T

F ,H
= −1/ ln(1−

F
W
) = 4.77. The weighted average of implied durations (continuous time) is

TF ,W = 8.38. As expected TF,W is both larger than the inverse of the aggregate

frequency (T
F ,H

) and larger than the direct average of durations. The latter
inequality results from censoring (note that the discrete time assumption used
in the direct measurement of durations tends to attenuate the discrepancy).
The weighted median of inverse frequencies is 6.20. The difference between the
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median and the weighted average is due to some frequencies of price changes Fj
being close to zero for a few elementary groups. Overall, our best estimate for
the average duration of prices is thus around 8 months. However such a statistic
is a very crude summary of the data since there is considerable heterogeneity
across sectors.

Table5: Duration of price spells by group of products
All price Food Durable Clothes Other Services
spells goods manuf.

Mean 7.14 5.23 5.44 5.56 5.28 10.64
Median 5.90 4.78 5.16 5.07 5.29 11.07
Min 1.22 2.57 2.60 1.94 1.22 2.19
25thpercentile 4.54 4.06 4.37 4.64 1.49 7.39
75thpercentile 9.10 5.52 6.14 5.99 7.04 12.50
Max 33.93 13.84 9.73 11.95 19.71 33.93
Standard deviation 4.04 2.06 1.57 1.38 3.28 4.10

# of elem. groups 1328 409 58 225 371 265
Note: price spells are averaged by elementary groups

Price rigidity, as measured by the direct measure average duration of price
spells, strongly vary across sectors (Table 5). The main relevant contrast seems
to be between services and other types of goods. The weighted average duration
of a price is twice larger in the service sector (10.64 month) than in the man-
ufacturing sectors (durable goods, clothing, other manufactured goods) and in
the food sector (around 5 months).

4.3 The unconditional hazard rate functions for price changes

We now turn to testing the predictions of pricing models. Given that our
database contains about 2.3 millions price spells, it is not possible to expect
to estimate duration models on such a huge database. We have then proceeded
to a random sampling to extract a 2% sample from this database. This leaves
us with a sample of more than 40,000 spells, covering various categories of
goods/services and types of outlets.

We have first estimated a piece-wise constant hazard model on the whole
sample as well as on the different sub-groups corresponding to the different
types of goods in order to get a rough idea of the shape of the hazard function.
Because the maximum possible length is very high, we have constrained the
hazard to be constant after 25 months8 and the hazard rate is thus plotted until
t = 25. The hazard is presented in Figure 1.

As Figure 1 clearly shows, the hazard rate of price changes seems to be de-
creasing, which is in strong opposition with the theoretical predictions of the

8Let us remind that, overall, only about 5% of spells last for more than 24 months.
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models presented in section 2. To interpret this result our favored option is to
rely on heterogeneity in pricing behavior. Indeed, it is well-known that aggre-
gating distinct populations of which each can be characterized by a constant
but different hazard leads to a “pooled hazard” which appears to be decreasing
(see e.g. Kiefer, 1988). Then, it is worth to have a further look at possible het-
erogeneities in our population. Indeed, as Figures 2 to 6 indicate, the hazard
function clearly differs from one category of good to the other.

From Figures 2 to 6, several conclusions emerge:

1) On one hand, we still get decreasing hazard functions for food and man-
ufactured goods. The shape of the hazard functions for durables show a clear
quarterly pattern which may be due to the periodicity of many price quotes
since, for those goods, many price quotes are made on a quarterly basis. The
pattern of the hazard for clothes is very peculiar. One can observe a huge spike
at 6 months, which undoubtedly corresponds to the seasonal pattern of clothing
items.

2) On the other hand, the hazard function for services shows an almost
constant hazard except for a very significant spike at 12 months. One can infer
from these estimates that the pricing behavior in the services sector is a mix
between a “Taylor type” behavior with a 12 months duration (people revise
their prices every year) and a “Calvo type” behavior where the probability of
changing prices is about 15%, irrespective of the time elapsed since the previous
price change. It remains to find out what are the distinctive characteristics of
those two sub-populations.

The main challenge is then to see whether a better account for observed
and unobserved heterogeneity would allow us to identify more clearly hazard
patterns that might be in better accordance with the theoretical models. We
have decided to focus on manufactured goods. Indeed, the clothing items and
the durable goods appear to be affected by very specific phenomena that we
leave for future research.

5 Accounting for heterogeneity and covariates :

econometric results

A first characteristic that clearly makes a strong difference across spells is the
existence of sales or rebates. Indeed, those spells that correspond to such events
are very likely to be short lived, typically less than 3 months. Moreover, the
impact of covariates such as the cumulated inflation over the spell do not play
the same role: “sales price spells” do not end because the cumulated inflation
has reached a threshold during the spell but because sales are temporary by
nature. Then, in order to limit the consequences of such an heterogeneity, we
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have decided, in a first step, to discard price spells corresponding to sales and
rebates from our sample.

5.1 Modelling time-varying heterogeneity

Table 6 below provides estimates of the impact of various factors that might af-
fect the likelihood of a price variation, conditional on the duration elapsed since
the previous price change. Except for the ”September” dummy, all coefficients
appear to be significant.

The probability of changing prices in January is higher than what it is for
the rest of the year. This is a calendar effect, part of which may be related to
the end of price spells associated with sales. The Euro cash change-over has had
a significant effect, though rather limited. However, as we will see in the next
section, there was some heterogeneity in the effect of the change-over on the
probability of changing prices across different types of outlets.

The two variables that appear to have the stronger effect are the dummies
accounting for the two VAT changes that occurred in 1995 and 2000. It is in-
teresting to note that there seems to be a near symmetry of the effect of an
increase (1995) or a decrease (2000) in the VAT rate; at least as regards the
probability of changing prices.

Finally, as could be expected, there are strong differences across different
types of outlets: Hyper- and supermarkets appear to change prices more often
than the more traditional outlets. Manufactured goods sold in ”services outlets”
(such as ”shampoo” from an hairdresser for example) appear to have more stable
prices than when they are sold in other types of outlets. This issue will be more
thoroughly analyzed in the next section.
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Table 6: Estimates of a piece-wise hazard model with covariates
All outlets

Euro 0.226**
TVA_1995 1.401***
TVA_2000 1.351***
January 0.378***
September 0.109
cumulated inflation 2.329**
Hypermarkets ref
Supermarkets -0.206***
Conven. store+hard discount -0.499***
General store -0.221***
Department store -0.412***
Large area specialists -0.351***
Traditional corner shop -0.588***
Services -0.794***

Number of obs. 4331
Wald: λ1 = λ2 = ... = λ12 88.3 (p=0.00)
Wald: λ2 = λ3 = ... = λ11 14.43 (p=0.11)

A consequence of the inclusion of covariates in the model is that the hazard
function is slightly ”flattened” as compared to the unconditional one. In partic-
ular, it is likely that inflation plays a role in such changes as inflation over the
course of the spell is a ”competitor” to duration dependence for explaining the
occurrence of a price change after some time has elapsed.

Then, one cannot reject that the hazard function is constant over the first
year, once the particular peaks observed for the 1 month and 12 months du-
rations have been excluded. This can be considered a a rough indication that
mixing three populations made of, respectively, ”flexible price outlets”, ”Taylor
12 months outlets” and ”Calvo outlets” might be an acceptable way to charac-
terize the heterogeneity in the pricing behavior of outlets .

5.2 Accounting for outlet behaviors heterogeneity

5.2.1 Estimating specific models for different types of outlets

Using an outlet dummy in a proportionnal hazard set-up may not be the most
relevant option to account for heterogeneity, for instance if the whole baseline
hazard differs across outlets. The estimation results we get for the remaining
sample of manufactured goods price spells and by splitting this sample according
to the type of outlet are given in the Table 7.
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Table 7: Estimates of a piece-wise hazard model with covariates
Hyper and Other types
supermarkets of outlets

Euro 0.068 0.362**
TVA_1995 1.138*** 1.729***
TVA_2000 1.246*** 1.409***
January 0.210*** 0.541***
September 0.083 0.132*
cumulated inflation 10.412*** 4.818**
Hypermarkets ref -
Supermarkets -0.212***. -
Conven. store+hard discount - ref.
General store - 0.280**
Department store - 0.081
Large area specialists - 0.146*
Traditional corner shop - -0.100
Services - -0.309***

Number of obs. 2230 2101
Wald: λ1 = λ2 = ... = λ12 75.63 (p=0.00) 34.79 (p=0.00)
Wald: λ2 = λ3 = ... = λ11 30.86 (p=0.00) 4.59 (p=0.87)

Notes:

1) cumulated inflation at the COICOP5 level

2) significance: *** at 0.01, ** at 0.05, * at 0.10, otherwise not significant

Several results are worth noting. The most noticeable one is that hetero-
geneity across different types of outlets is clearly confirmed. The estimates at
the bottom of the first column show indeed that prices change more often in
hypermarkets, then come the supermarkets (small and large). At the opposite,
prices remain unchanged for longer periods in services outlets and in traditional
corner shops. Indeed, the baseline hazard is significantly higher in the former
(about 0.2 on average during the first 12 months) than in the latter category of
outlets (about 0.12 over the same period of time).

Another difference relates to the impact of the Euro cash change-over and
to that of changes in the VAT rate. It appears that hyper- and supermarkets
do not react to those changes as fast as smaller outlets do. This is particularly
striking as regards the Euro cash change-over. The dummy is not significant
when one restricts the sample to hyper- and supermarkets. This is an indication
that those outlets have indeed stuck to the commitment they took in the year
before the change-over to freeze their prices for several months. We still have to
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check whether they did change their prices well in advance and/or caught up
their “backlog” afterwards. In much more moderate way, the impact of VAT in
large outlet type appears to be lower than the same impact for more traditional
stores: since hazard is raised by a factor 1.409 for small outlet in the occurence
of a VAT change, while it is raised by a factor 1.246. Note that, since the
baseline hazard is higher in supermarket, it is closer to the upper bound of 1,
which puts more restriction on the parameter on VAT change.

On the contrary, large outlets seem to adjust more promptly to the cu-
mulated inflation than smaller ones. Given the way the cumulated inflation is
considered here (it is measured as the difference to the average changes in the
prices of the same type of products), this may be seen as a faster adjustment to
changes in the competitiveness of the outlet as compared to the others. Those
large outlets may have a better capacity to observe those changes and to react
to them than it is the case for smaller-“traditional” shops. This may be related
to the last interesting conclusion that can be drawn from those estimates: the
seasonality in pricing behaviors (which is quite strongly marked in previous re-
sults; e.g. see Baudry et al. (2004)) seems to be stronger in small outlets than
in large ones. Indeed, the seasonal dummies we have included in the model take
higher values and are more significant for the former than they are for the latter.

On the whole, although this has to be confirmed by further analysis our
results indicate a stronger propensity of hyper- and supermarkets to use “state-
dependent” pricing rules9 while the smaller and more traditional outlets would
more “time-dependent” price-makers.

Finally, going back to our main issue, that is the shape of the hazard function,
our conclusions are mixed. On the one hand, the shapes of the hazard functions
for these two groups of outlets clearly confirm their heterogeneity. The hazard
function for hyper- and supermarkets is decreasing, which is in contradiction
with pricing theories. Whether this is still due to some ignored heterogeneity
is still an open question to check. On the other hand the hazard function for
smaller outlets is more in line with theory. Here again, we cannot reject its
constancy along the first 12 months except for the spikes at 1 and 12 months.
As in the case of services that we previously considered, it seems that there
would be a mix of three populations: two with fixed length contracts (either
short ones or long ones - i.e. for 12 months) and another one better described by
Calvo’s model. Estimating mixture models, in the line of Alvarez et al. (2004),
is a promising avenue to formally assess this hypothesis. Our research agenda is
to estimate mixture model incorporating time-varying covariates.

6 Conclusion

To be completed.
9An exception would be the Euro cash change-over.
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8 Appendix 1 - Specific data issues

Dealing with the euro cash change-over

When we consider full sample 1994:7 to 2003:2, price are collected in eu-
ros from 2002:1 onwards. We deal with this numéraire issue by dividing all
prices prior to 2002:1 by 6.55957, the official Franc/euro exchange rate, without
rounding [notice that, had we rounded prices, then some subsequent but dif-
ferent prices expressed in French Francs would have been rounded to the same
price in euros, thus spuriously merging different price spells]. At the time of
euro cash changeover (january 2002) however, all price were set in euro round-
ing up to the second decimal. In order to construct price spells we adopted the
following rule: if the price (in euro) in december 2001 rounded up to the secon
decimal is equal to the price in january 2002, then the two prices are considered
as part of the same spell.

Dealing with corrections for temporarily unobserved prices.

When a product is temporarily absent from an outlet (or when an outlet is
temporarily closed) the INSEE evaluates price, in order to compute the price
index, by applying the avera increase in the same kind of products in the same
area. The price evaluated by the INSEE cannot be regarde as a proxy for the
unobserved price (it aims at producing an unbiased aggregate index).

Our approach is the following : temporarily unobserved prices (dated t) are
replaced by previous price when previous price (dated t-1) is equal to subsequent
price (dated t+1).

More formally when Pj,t,k is a ”pseudo-observation” (in fact has been re-
placed) and that Pj,t−1,k =Pj,t+1,k,we set Pj,t,k = Pj,t−1,k.

Note that our treatment is different from that adopted by INSEE, which
replaces an unobserved price by the average in the same area. The INSEE, in
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fact, has to evaluate prices in ”real time”.(at date t) and by definition cannot
use the same rule as us.

Dealing with sales, rebates, changes in taxes.

In the data we can identify whether the observed price corrresponds to sales,
or temporary rebates. The proportion of price quote that are sales is 0.76% and
temporary reduction amount to 1.92%

Also note that two major specific event occuring during the observed sample:
in August 1995 the normal VAT rate was raised from 18.6% to 20.6% and in
April 2000 this rate was lowered to 19.6%.

In the baseline analysis, we considered these price change as regular.
To summarize, our baseline data is 1994:7 to 2000:12, where ”pseudo ob-

servations” (corresponding to temporarily unobserved prices) are corrected ac-
cordiing to the rule described above.

9 Appendix 2: Analysing the duration of left-
censored (and possibly also right-censored) du-
rations

The analysis of left-censored spells such as the first spell in figure 1 is more
complex. Left-censoring may only affect the first spell of a price trajectory,
so that we denote it as t1j. As in the case of right censoring, we know that

the true unobserved duration t
∗

1j is greater or equal than the observed one t1j .

However, taking this into account cannot be done as simply as in the case of

right-censoring as in that case, we do not know the starting date of the spell.

This has the important implication that, except in the particular case where

the hazard rate function is constant, the probability of lasting one more period

differs from one spell to the other, depending on the unknown starting date of

the spell. We then have to integrate over all possible starting dates of the spell,

from −∞ to the beginning of the observation period.

From now on, let us omit the indexes 1 and j for the sake of simplicity. Let

us denote by S the random variable defined as the duration of the unobserved

part of the spell. As just said above, one must integrate the joint distribution

l(s, t) with respect to s:

h(t) =

∫
∞

0

l(s, t) ds.

We can write the joint probability l(s, t) that the unobserved part of the spell
lasts for s periods and that the observed one lasts for t periods as l(s, t) = m(t
| s)× fs(s) where fs(s) is the unconditional density of the unobserved part of

the spell.
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Now, m(t | s) is the probability of the observed part of the spell lasting t
given the unobserved part lasted s. It is then equal to the joint probability of

the unobserved part of spell lasting s and that of the observed part lasting t,
divided by the probability that the unobserved part lasted s, which is exactly

the survivor function evaluated at s. Indeed, Since the former joint probability
is nothing but the probability of the “full” spell lasting s+ t, we can write:

m(t | s) = f(t+ s)/(1−Fs(s)).

In other words, we adjust the probability of a spell lasting t + s by taking

account that, for this to be possible, one must restrict to spells that survived s
periods.

Now, f
s
(s) the probability for a spell to last s periods can be expressed as

the product of having started s periods before, k(−s), by the probability of

being still alive after s periods, 1− Fs(s) :

f
s
(s) = k(−s) × (1− F

s
(s)).

Now, one can assume that the so-called “entry rate” k(−s),which measures

the probability that a price change did occur s periods before, is constant and

does not depend on s : k(−s) = k, ∀s. Then,

l(s, t) =
f(t + s)

1−Fs(s)
.k.(1−F

s
(s)) .

which leads to,

h(t) = k

∫
∞

0

f(s+ t) ds

=
1− F (t)

E(T )
.

where the entry rate k is approximated by the inverse of the duration of spells
(T ) in the population. Indeed, defining v = t+ s, the integral in the expression

above can be written as

∫
∞

0

f(s+ t) ds =

∫
∞

t

f(v) dv = 1− F (t).
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9.0.2 Analysing the duration of right and left-censored durations

Having both right and left-censoring appears to be not that uncommon in our
sample, as shown in table CCC above. It is then worth trying to generalize
the arguments above for finding the distribution of spells that are both right-
and left-censored. Based on the argument that the probability of observing a
right-censored spell lasting t periods is equal to the probability that a spell has
survived t periods at least (g(t) = 1 − F (t)), one can write that, knowing that
a right-censored spell lasted s periods before the beginning of the observation
period, the probability of being still going on after t periods in the observation
period is given by:

m(t | s) = (1−F (t+ s))/(1− Fs(s)

where 1−F (t+ s) is the probability that a spell will last at least t+ s periods
due to right-censoring, and where dividing by 1−Fs(s) is necessary to account
for left-censoring as we condition on s and thus, restrict to those spells still alive
after s periods. Now, one has to integrate over all possible values of s. Then,
as seen in the previous section:

h̃(t) =

∫
∞

0

l(s, t) ds

=

∫
∞

0

m(t | s) fs(s) ds

with fs(s) = (1− Fs(s))/E(T ). Then,

h̃(t) =
1

E(T )

∫
∞

0

[1− F (t + s)] ds.

Then, setting v = t+ s, one can rewrite this expression as

h̃(t) =
1

E(T )

∫
∞

t

[1−F (v)] dv.
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Figure 1: Hazard rate (all products/servi ces)
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Figure 2: Hazard rate (food products)
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Figure 3: Hazard rate (clothes)
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Figure 4: Hazard rate (manuf. goods)
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Figure 5: Hazard rate (durable goods)
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Figure 6: Hazard rate (services)
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Figure 7: Baseline hazard for maufactured goods in all outlets
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Figure 8: baseline hazard for manufactured goods in hyper and supermarkets
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Figure 9: Baseline hazard for manuf. goods in ``smaller'' outlets


