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Abstract

A common �nding in empirical studies using micro data on consumer and producer prices

is that hazard functions of price durations are decreasing. This means that a �rm will

have a lower probability of changing its price the longer it has kept it unchanged. This

result is at odds with standard models of price setting. In this note a simple explanation is

proposed: decreasing hazards may result from aggregating heterogeneous price setters. We

show analytically the form of this heterogeneity e¤ect for the most commonly used pricing

rules and �nd that the aggregate hazard is (nearly always) decreasing. Results are illustrated

using Spanish producer and consumer price data. We �nd that a very accurate representation

of individual data is obtained by considering just 4 groups of agents: one group of �exible

Calvo agents, one group of intermediate Calvo agents and one group of sticky Calvo agents

plus an annual Calvo process.

�This study was conducted in the context of the Eurosystem In�ation Persistence Network. We are extremely
grateful to the Instituto Nacional de Estadística for providing us with the micro price data and, particularly, to
Aránzazu García-Almuzara, Manuel Garrido, Ignacio González-Veiga and Alberta Ruiz del Campo for their help.
In addition, we wish to thank all the other network members for discussions and suggestions, in particular Stephen
Cecchetti, Daniel Dias, Jordi Galí, Vitor Gaspar, Hervé Le Bihan, Pedro Neves, Patrick Sevestre, Frank Smets,
Harald Stahl and Philip Vermeulen. We are most grateful to Josef Baumgartner, Emmanuel Dhyne, Hervé Le
Bihan and Giovanni Veronese for providing us with data on the hazard function of their respective countries, and
to Alex Wolman for providing the codes used in Dotsey, King and Wolman (1999).
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A common �nding in empirical studies using micro data on consumer and producer prices is that

hazard functions of price durations are decreasing1 (see �gure 1). This means that a �rm will

have a lower probability of changing its price the longer it has kept it unchanged. This result is

at odds with standard theoretical models of price setting.

The explanation to this puzzle proposed in this paper is that unconditional decreasing hazards are

due to the aggregation of heterogeneous price setters, and thus decreasing hazards are not neces-

sarily evidence against standard models (e.g. Taylor, Calvo or truncated Calvo). The intuition

is as follows. By de�nition, the probability of observing price changes is lower for products with

high durations than for products with low durations, while the aggregate hazard considers price

changes for all products. Therefore, when the aggregate hazard function is obtained, the share

of price changes of products set by �rms with more �exible pricing rules decreases as the horizon

increases and, consequently, the hazard rate also decreases.

In this paper we formalise this idea by analysing the consequences for the aggregate hazard rate

of the coexistence of �rms with di¤erent pricing rules. In particular, we show that if micro data

are generated by heterogeneous �rms then the aggregate hazard is (nearly always) decreasing.

We provide analytical expressions for these heterogeneity e¤ects in the most widely used pricing

models.

Moreover, in the empirical section, we test some of these theoretical results using Spanish consumer

(CPI) and producer price (PPI) data. We take a parsimonious approach, assuming that the

aggregate economy is composed of Calvo agents with di¤erent average price duration2, and let

the data determine the optimal number of groups. In particular, we estimate a �nite mixture of

Calvo models considering 1, 2, 3, 4 and 5 groups and then choose the optimal model according to

several model selection criteria.

We �nd the most adecuate description of both the CPI and PPI data is a model with 4 Calvo

groups: one group with a very �exible pricing rule that results in an average duration slightly over

1 month; another group with intermediate �exibility (average price-duration is around 10 months);

and, a group with very sticky prices, which are kept constant on average for more than 40 months;

1A more detailed description of the empirical evidence on consumer prices (CPI) can be found in Baumgartner
et al (2004) for Austria, Aucremanne and Dhyne (2004) for Belgium, Fougère et al (2004) for France, Veronese et
al (2004) for Italy, Alvarez and Hernando (2004) for Spain, Campbell and Eden (2004) and Klenov and Krystov
(2004) for the United States. In addition, Dhyne et al (2004) review the empirical evidence for CPI across euro
area countries. Finally, empirical evidence on producer prices is found in Alvarez et al (2004) for Spain and in
Stahl (2004) for Germany.

2The Calvo (1982) model of time dependent price setting involves a simple analytical expression for the hazard
function (as well as the density and survival), which requires estimating only one parameter per group. An
alternative would be Taylor�s (1980) model. However, in this context, this model is less parsimonious since it
requires having as many groups as relevant spikes in the hazard function.
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Figure 1: International evidence on decreasing hazard functions of price durations

Note: Austrian hazard function is smoothed.
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plus a group of �rms with an annual Calvo pricing rule, with an average price duration of around

a year and a half. In terms of the relative size of the groups, the largest is the intermediate

group, accounting for around 50% of the production value in the case of the PPI and 60% of

consumer�s expenditure in the case of the CPI. The �exible and sticky Calvo groups are roughly

similar in size in terms of the share of PPI (20%) and CPI (14%). Finally, the annual Calvo group

is the smallest one, accounting for 7% of PPI and 13% of CPI. An analysis of the composition

of the groups in terms of the di¤erent types of goods and services provides interesting results.

Speci�cally, we observe that the �exible pricing rule is used mostly by producers of energy and

intermediate goods and by retailers of food products; the intermediate rule is used by all producers

and retailers, except energy producers and retailers of unprocessed food; and the sticky and annual

Calvo pricing rules are mainly used by producers of capital and consumer durable goods and by

retailers of non-energy goods and services.

The structure of this paper is as follows. Section 1 presents the analytical expression of the hazard

for the aggregate economy. Sections 2 shows these results for the Calvo, Taylor and Dotsey, King

and Wolman�s price-setting mechanisms. Section 3 presents the results of an empirical application

for Spanish producer and consumer price data as well as the econometric methodology used.

Finally, section 5 concludes.

1 General case

The aim of this section is to present the relationship between the (change in the) hazard rate of

an aggregate economy and the (change in the) hazard rate of the groups of agents composing it.

We use throughout a discrete time approach since this is the one most frequently used for price

setting models.

First of all, it is assumed that the aggregate economy is composed of two groups of agents with

di¤erent hazard functions, with sizes s1 and s2, respectively.

The hazard rate is the probability that a price will change in period k, provided that it has

remained constant during the previous k� 1 periods3. More formally, the hazard rate for group i
is given by

hi(k) =
f i(k)

Si(k)

3k is the length of the price spell.
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where f i(k) is the density function, which measures the frequency of �rms adjusting prices in

period k and Si(k) is the survival function, which measures the frequency of �rms which have

kept their prices constant during the previous k � 1 periods.

For the aggregate economy, the aggregate frequency of �rms changing prices in period k and the

aggregate frequency of �rms not having adjusted prices in the previous k� 1 periods are given by

f(k) = �f 1(k) + (1� �)f 2(k)

S(k) = �S1(k) + (1� �)S2(k)

where � = s1
s1+s2

is the share of �rms of group 1 in the economy as a whole. That is, the density

function and the survival function of the aggregate economy are convex linear combination of the

respective functions for each of the groups of �rms, with �xed weights equal to the relative size of

each group.

In turn, the hazard rate of the aggregate economy in period k can be expressed as

h(k) = �(k)h1(k) + [1� �(k)]h2(k)

where the weight �(k) =
�
S1(k)
S(k)

�
is a function of k and thus not constant along the hazard.

Therefore, the aggregate hazard is a convex linear combination of individual hazards, although

the weights vary with k.

It is straightforward to show4 that the change in this aggregate hazard, for a given change in k,

is equal to

�h(k)

�k
=
�h1(k)

�k
�(k) +

�h2(k)

�k
[1� �(k)] +H(k) (1)

4Note that

�h(k)

�k
=
�h1(k)

�k
�(k) +

�h2(k)

�k
[1� �(k)] + ��(k)

�k

�
h1(k)� h2(k)

�
+
��(k)

�k

�
�h1(k)

�k
� �h

2(k)

�k

�
�k

��(k)

�k
=
�(k) [1� �(k)]
1� h(k)�k

�
h1(k)� h2(k)

�
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where

H(k) = ��(k) [1� �(k)]
�
h1(k)� h2(k)

�2
"(k)

and

"(k) =

8<:1 + [h
1(k)� h2(k)]�1

h
�h1(k)
�k

� �h2(k)
�k

i
�k

1� h(k)�k

9=;
This expression shows that the change in the hazard rate of an aggregate is a convex linear

combination of the change in the hazard rates of its components plus a heterogeneity e¤ect5.

This heterogeneity e¤ect is the discrete time version of the well known result in the duration

analysis literature that not controlling for unobserved heterogeneity biases estimated hazard func-

tions towards negative duration dependence (see Lancaster and Nickell(1980) or Heckman and

Singer(1986)). In fact, "(k) converges to 1 as �k tends to zero and the expression of H(k) con-

verges to the continous time one (see Appendix A). Notice, however, that in the discrete time case

the heterogeneity e¤ect will be positive if "(k) < 0. This contrasts with the continous time result,

where the heterogeneity e¤ect cannot be positive.

Note that, for the three most widely used time dependent pricing rules (Calvo, truncated Calvo6

and Taylor) the change in individual hazards is zero for all k, so that the slope is completely

determined by the heterogeneity e¤ect. For these models, this e¤ect is never positive and so is

the slope of the hazard7.

A necessary and su¢ cient condition to have a downward sloping hazard is that the third term in

equation (1) be larger than the sum of the �rst two terms

�h(k)

�k
� 0 iff

�h1(k)

�k
�(k) +

�h2(k)

�k
[1� �(k)] � �H(k) (2)

These results can be easily generalised for the case of N groups of �rms. In fact, it can be shown

that

�h(k)

�k
=

NX
j=1

�j(k)
�hj(k)

�k
+H(k) (3)

where H(k) = �
N�1X
j=1

NX
l=j+1

�j(k)�l(k)
�
hj(k)� hl(k)

�2
"jl(k)

5Note that the heterogeneity e¤ect disappears if the hazards of the two groups are equal (h1(k) = h2(k)) or if,
for a given k, there are no more �rms belonging to one group (�(k) = 0 or �(k) = 1).

6See Wolman (1999) and Dotsey (2002).
7Except for the period k when truncation ocurs for the truncated Calvo and Taylor cases, where the hazard

increases.
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Moreover, a similar necessary and su¢ cient condition to have a downward sloping hazard in this

case is
�h(k)

�k
� 0 if

NX
j=1

�j(k)
�hj(k)

�k
� �H(k)

2 Particular cases

In this section we provide the expressions corresponding to the aggregation of di¤erent types of

agents, each setting prices according to some of the most widely used models in the literature. First

of all, we present results for the two most widely used time-dependent models in the literature,

those of Calvo (1983) and Taylor (1980). Then, we propose a new time-dependent model to deal

with the existence of �rms with annual pricing rules. Finally, we present results based on the state

dependent model of Dotsey, King and Wolman (1999).

2.1 Calvo agents

The model of price setting introduced by the seminal work of Calvo (1983) has become one of the

most widely used in the current macro literature on sticky prices, mainly due to its theoretical

tractability and that is easy to test empirically8. This model of price setting assumes that there is

a constant probability that a given price setter will change its price at any instant. This, together

with the assumption that there is a large number of price setters who act independently, implies

that there is a constant proportion of prices being changed at any instant.

The density, survival and hazard functions for this type of agents take the following functional

forms

f i(k)si = (1� �i)�k�1i si

Si(k)si = �
k�1
i si

hi(k) = (1� �i)

When we aggregate two groups of agents with Calvo price setting rules with di¤erent average price

durations, the aggregate economy will have the following density, survival and hazard functions,

respectively

f(k) = (1� �1)�k�11 �+ (1� �2)�k�12 (1� �)
8Important contributions to this literature include Roberts (1995), Fuhrer and Moore (1995), King and Wolman

(1996), Rotemberg and Woodford (1997), Galí and Gertler (1999), Galí, Gertler and López-Salido (2001) and
Sbordone (2002).
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Figure 2: Hazard of 2 groups with Calvo price setting and average price duration of 3 and 12
months, respectively (si = 1

2
)
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Figure 3:

S(k) = �k�11 �+ �k�12 (1� �)

h(k) = �(k)(1� �1) + [1� �(k)] (1� �2)

where �(k) =

"
1 +

�
�2
�1

�k�1�
1� �
�

�#�1

An interesting property of this model is that the aggregate hazard converges assymptotically to

the hazard of the group with the longest average price duration9, as can be seen in the right hand

side of �gure (3).

lim
k!1

h(k) =
�
1� �

�
where � = max f�ig (4)

In this case, the change in the aggregate hazard as k changes is equal to

�h(k)

�k
= H(k) = ��(k) [1� �(k)]

1� h(k)�k (�1 � �2)2 � 0

That is, when the aggregate economy is composed of groups of Calvo agents, there is only a

heterogeneity e¤ect because the hazard is constant for all k and 0 � �(k) � 1. Therefore, the

9Note that:
lim
k!1

�i(k) = 1 & lim
k!1

�j(k) = 0 if �i > �j
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change in the aggregate hazard will never be positive. Moreover, the change in the aggregate

hazard as k changes converges assymptotically to zero, since the aggregate hazard converges to

the hazard of the group with the longest average duration (see equation (4)). As an illustration,

�gure 3 presents in the left hand side the hazard functions of two groups of Calvo agents with

durations of 3 and 12 months and in the right hand side the downward sloping hazard of the

aggregate.

Results are easily generalized for the case of N groups of �rms following di¤erent Calvo price

setting rules. The change in the aggregate hazard as k changes is equal to

�h(k)

�k
= H(k) = �

N�1X
j=1

NX
l=j+1

�j(k)�l(k)

"
(�j � �l)2

1� h(k)�k

#
� 0

and it is clear that the change in the aggregate hazard is only due to the heterogeneity e¤ect

and that the aggregate hazard will never be positive. Again, the aggregate hazard will converge

assymptotically to the one of the group with longest average price duration.

2.2 Taylor agents

The model of price setting �rst introduced by the seminal work of Taylor (1980) is another model

widely used in the current macro literature on sticky prices10. This model of price setting assumes

that prices are set by multiperiod contracts, thus remaining constant for the duration of the

contract.

When one aggregates two groups of agents with Taylor contracts of di¤erent duration, J1 > J2,

and sizes s1 and s2, respectively, the aggregate economy will have the following hazard function

h(k) =

8><>:
1� � for k = J2

1 for k = J1

0 for other k

In this case the hazard rate is zero except in those periods in which the end of the Taylor contract

ocurs for one of the groups, that is, it is never decreasing. The same is true when the economy is

composed of several groups of �rms with di¤erent Taylor contracts.

Alternatively, when the aggregate economy is composed of two groups of �rms, one setting prices

according to a Calvo model and another setting prices according to a Taylor contract of length J ,

10Important contributions to this literature include Erceg et al (2000), Chari, Kehoe and McGrattan (2000) and
Coenen and Levin (2004).
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Figure 4: Hazard of 1 Calvo and 1 Taylor.
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with sizes s1 and s2, respectively, the aggregate hazard takes the following form

h(k) =

8><>:
�(k)(1� �) for k = 0; 1; :::; J � 1

�(k)(1� �) + [1� �(k)] for k = J

(1� �) for k > J

where �(k) = s1�
k�1

s1�
k�1+s2

. As shown in �gure 4, this aggregate hazard will be decreasing for all k

until the period in which Taylor contracts end. Note that hazard rates for horizons shorter than

the length of the Taylor contract are lower than those for longer horizons.

2.3 Annual pricing agents

International evidence shows that aggregate hazard functions of price spells are characterised by

local modes at durations of 12, 24, 36,... months (see �gure 1), indicating that a fraction of �rms

apply annual pricing rules. This is in line with results of Álvarez and Hernando (2004b) for Spain

and Fabiani et al (2004) using the surveys on pricing behaviour that have been recently carried

out for most euro area countries. Speci�cally, modal and median number of price changes per year

is one in all eight countries considered.

This stylized fact is easily accomodate theoretically by de�ning a group of agents with an annual

Calvo rule, according to which these �rms reset their prices every 12 months, but keep them

constant in between. The frequency and survival functions for agents using this pricing rule are

10



Figure 5: Hazard of 1 Calvo and 1 Annual Calvo
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as follows

f(k) = (1� �) �(int(
k
12)�1)I12; where I12 =

(
1

0
if

k
12
= int

�
k
12

�
otherwise

S(k) = �int(
k�1
12 )

which generate the following hazard function

h(k) = (1� �) I12

When the aggregate economy is composed of two groups of agents, one setting prices according to

a standard Calvo mechanism with parameter � and another setting prices according to an annual

Calvo with parameter �s, with sizes s1 and s2, respectively, the aggregate hazard function takes

the following form

h(k) = �(k)(1� �) + [1� �(k)] (1� �s) I12 for k = J

where �(k) = s1�
k�1

s1�
k�1+s2�

int( k�112 )
s

. As shown in �gure (5) the slope of this aggregate hazard is

decreasing for all months except for the multiples of 12, when the agents with annual Calvo rules

change their prices. Comparing values of the hazard function for periods multiples of 12 also

shows a decreasing pattern.
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2.4 Dotsey, King and Wolman agents

In the models of price setting analyzed so far, �rm�s pricing decisions are time-dependent, that is,

they do not depend on any of the state variables determining the situation of the �rm. In contrast

to these models, Dotsey, King and Wolman (1999) (DKW henceforth) present a theoretical state-

dependent pricing framework11, in which every �rm faces each period a di¤erent �xed cost of

adjusting its nominal price, which is drawn independently over time. At the start of each period

there is a discrete distribution of �rms which last adjusted its price k periods ago. The number

of �rm types is determined endogenously and will vary with factors such as the average in�ation

rate or the elasticity of product demand. When in�ation is high, �rms choose to maintain a given

price for fewer periods, because in�ation erodes its relative price. Positive in�ation means that the

bene�ts of adjusting prices are higher for �rms whose prices were set further in the past (which

then su¤er higher accumulated in�ation), and this translates into higher adjustment probabilities

for such �rms. As a consequence, the hazard rate is increasing.

This model is very interesting and intuitive but also analitically complex and di¢ cult to test

empirically. In fact, it is not possible to derive closed form expressions for the hazard function (or

the density and survival functions). Nevertheless, numerical expressions of the hazard rate can be

obtained through simulations for a given underlying distribution of menu costs of adjusting prices

and for given steady state values of the other variables of the model.

In order to show the implications of having some agents in an economy behaving in a DKW

state dependent manner, we present two types of simulations. The �rst one corresponds to the

aggregation of one group of Calvo agents -with constant hazard rate- and another one of DKW

agents -with increasing hazard rate- (see left hand side of �gure 6). As was shown in equation (1),

the slope of the aggregate hazard of this economy will have two components: the weighted average

of the hazard rates of each group plus a heterogeneity e¤ect. As can be seen in the right hand

side of �gure 6, the aggregate hazard declines initially since the (negative) heterogeneity e¤ect

dominates the upward sloping hazard of DKW agents. However, for longer horizons the upward

sloping hazard e¤ect dominates.

The second simulation aggregates two groups of DKW agents with di¤erent steady state in�ation

rates. As can be seen in the left hand side of �gure 7, the higher the in�ation rate the shorter the

length of time prices remain unchanged. In this case, the heterogeneity e¤ect is very moderate

and the aggregate hazard is again (nearly always) increasing.

These two examples illustrate the fact that heterogeneity does not necessarily lead to decreasing

hazards. In addition, they show that it is di¢ cult to obtain an aggregate hazard decreasing for all
11Another example of state-dependent pricing rules is Golosov and Lucas (2003).
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Figure 6: Hazard of 1 Calvo and 1 DKW model
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horizons when some of the agents in the economy face an increasing hazard, since the weighted

average of the individual slopes eventually dominates the (negative) heterogeneity e¤ect.

3 Empirical results

In this section, we review the international evidence on unconditional hazard functions of price

durations and test empirically the theoretical results derived in the previous sections.

Available international evidence on unconditional hazard functions (see �gure 1 and references in

the introduction) employing consumer price and producer price data suggests the following three

stylised facts:

F1: Hazard functions are downward sloping.

F2: A large fraction of �rms change their prices monthly or even more frequently.

F3: An important number of �rms review their prices once a year and change them every 12, 24,

36 . . . months.

As explained in the theoretical sections above, it is possible to build price setting models that

allow for these stylized facts. For this purpose, we take the most parsimonious approach possible
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Figure 7: Hazard of two di¤erent DKW models
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and consider only time dependent representations of Calvo price setting processess. The main

reason for using the Calvo model is that it is analytically simple, easier to estimate12, and, at

the same time, easily reconciled with the stylized facts (see section 2.1). Alternatively, the Taylor

model of price setting could be used. However, this model is less parsimonious in this context,

since it requires having as many groups of agents as relevant spikes in the hazard.

A model based on Calvo price setting consistent with the stylized facts would be as follows:

- F1 can be explained as the result of the aggregation of several heterogeneous agents. In fact,

a simple way to incorporate this stylised fact into the analysis is to specify two (or more) agents

with di¤erent Calvo price setting rules (see �gure 3 for an example).

- F2 can be easily accommodated assuming that there is a fraction of �rms with highly �exible

Calvo pricing rules or, alternatively, one-month Taylor contracts.

- Finally, F3 suggests using an annual Calvo pricing rule like the one de�ned in section 2.3.

The hazard function that considers F1-F3 would be as follows

h (k; �; �) =

g�1X
j=1

�j (1� �j) �k�1j +

 
1�

g�1X
j=1

�j

!
(1� �g) �

(int( k�112 ))
g I12

g�1X
j=1

�j�
k�1
j +

 
1�

g�1X
j=1

�j

!
�
(int( k�112 ))
g

(5)

12One should always keep in mind that the hazard function is highly non-linear.
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where the j = 1; : : : ; g � 1, groups represent the di¤erent standard Calvo agents, the gth group
represents the annual Calvo agents, �j, represent the Calvo parameters and �j the weights of the

di¤erent groups of agents.

In this section we have considered only time dependent representations of price setting processes.

Although this framework may provide a reasonable description of the data at an aggregate level,

particularly in a stable economic environment, evidence presented in Álvarez and Hernando (2004)

and Álvarez, Burriel and Hernando (2004) points to the importance of state dependent elements

such as in�ation and �scal developments when analysing pricing behaviour of individual �rms

in Spain13. However, the estimated impacts of these state dependent variables are moderate.

Similarly, Klenow and Krystow (2004) show that a calibration of the DKW model for the U.S.

provides impulse responses that are quite close to those of a simple time dependent model.

The most adecuate econometric methodology to estimate a model like the one described by equa-

tion (5) is a �nite mixture model. This will be described in the next section.

3.1 Econometric speci�cation: Finite mixture models

This section brie�y reviews the �nite mixture models that are employed in the section below. Finite

mixture models have been applied to a wide variety of data in the physical, social and medical

sciences14 since the seminal contribution of Pearson (1894). A �nite mixture model represents a

heterogeneous population consisting of k groups of sizes proportional to �ij (j = 1; : : : ; k) and

where the group from which each observation is drawn is unknown. The probability density

function of the observed random variable y has the form

f(y; �) = �i1f1(y; �1) + �i2f2(y; �2) + :::+ �ikfk(y; �g)

This is a weighted average of densities f1, . . . , fg with mixing weights �i1, . . . , �ig where

�i1+�i2+. . .+�ig= 1 and �j is a vector of the unknown parameters in fj, which need not be-

long to the same parametric family.

This framework fully uses the individual information available and is easily modi�ed to take into

account that duration data are typically censored15. Speci�cally, allowing for censoring, the log

likelihood function for the �nite mixture model above is given by:

13In future work we intend to estimate state dependent models that also use the economic theory based unobserved
heterogeneity that is described in this section.
14See Titterington et al (1992) for a review.
15In what follows we do not take into account left censored observations. For ease of exposition we will refer to

right censored observations simply as censored observations.
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l(�) =
X
NC

log(
kX
j=1

�jfj) +
X
C

log(
kX
j=1

�jSj)

where NC and C refer to non censored and censored price spells and fj and Sj represent the

density and survival functions, respectively. Since this log-likelihood function involves the log of

a sum of terms that are highly non-linear functions of parameters and data, its maximization

using standard optimization routines is not in general feasible. Therefore, we resort to the EM

algorithm, as it is usual in the literature16(See Dempster, Laird and Rubin (1977)). Speci�cally,

we consider the data augmented with unobservable dummy variables that identify each group �ji
= (�1i, . . . , �ki), such that, for each i, �ji = 1, for one j and �ji = 0 for the rest). The log

likelihood can then be written as

l(y; �j�) =
gX
j=1

nX
i=1

�ij log �j +

gX
j=1

nX
i=1

�ij log fj +

gX
j=1

nX
i=1

�ij logSj

and the EM approach computes ML estimates using the following algorithm.

1. Expectation (E) step. For given �, compute �ij (the estimated conditional probability of

individual i belonging to group j) and �j (marginal probabilities) using the formulae

�̂ij =
�jfj(yi; �j)

��jfj(yi; �j)
if yi is uncensored

�̂ij =
�jSj(yi; �j)

��jSj(yi; �j)
if yi is uncensored

and �̂j =
1

n
�ni=1�̂ij

2. Maximization (M) step. For given values of �ij and �j, maximize the log likelihood function

with respect to �

Starting from initial estimates, the EM algorithm consists in iterating 1) and 2) until convergence.

It can be shown that each iteration of the algorithm increases the likelihood and that it �nally

maximizes it. In our applications we use as starting values minimum distance estimates of this

model employing grouped data17.

16Alternatively, Diebolt and Robert (1994) and Richardson and Green (1997) use Bayesian approaches to estimate
�nite mixtures employing Markov chain Monte Carlo (MCMC) methods.
17The minimum distance estimates can be obtained in the following manner. If h = [h(1); :::; h(k)] denotes the

empirical hazard and h(�; �) = [h(1; �; �); :::; h(k; �; �)) the hazard corresponding to a given theoretical model, then
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Our empirical strategy is agnostic with respect to the number of groups characterizing the data,

that is, about the number of j0s in equation (5). The optimal number of di¤erent groups of Calvo

agents is obtained by estimating the mixture model, separately for models including one to �ve

groups of di¤erent Calvo agents (values of j = 1 � 5) and also augmented models incorporating
a group of annual Calvo agents. Then, for each of these estimations we compute di¤erent model

selection criteria, such as the Akaike Information criterion (AIC), the Bayesian Information Cri-

terion (BIC), the Integrated Classi�cation Likelihood Criterion (ICLC) and a likelihood ratio test

(L-R) comparing models with j � 1 groups against j � 2 groups. This criteria are calculated as
follows:

AIC = �2 log
h
L(b	)i+ 2d

BIC = �2 log
h
L(b	)i+ d log (n)

L�R = 2
n
log
h
L(b	j=k)i� log hL(b	j=k�1)io

ICLC = �2 log
h
L(b	)i+ 2EN(b�) + d log (n)

where EN(b�) = �
kX
j=1

nX
i=1

�̂ji log (�̂ji)

where d is the number of unknown coe¢ cients estimated, n is the number of observations and

L(b	) is the maximum likelihood for the set of unknown parameters estimated18.

So far we have implicitly assumed that the researcher is interested in obtaining the mixture

distribution of price spells. Nonetheless, other interests are likely to arise. First, one can also

be interested in determining the number of �rms19 belonging to each particular group. In this

case, the distribution of price spells cannot be directly used since, by de�nition, �rms whose

prices remain unchanged for long time periods contribute less price spells and are, therefore,

underrepresented in terms of price spells. In the empirical section below, we estimate proportions

of �rms by randomly selecting one price spell for each price product trajectory and then applying

the EM algorithm. Second, the use of the number of �rms may also be considered misleading,

the minimum distance estimator is the result of the following optimization problem

�MD; �MD = argmin
f�;�g

�
h� h(�; �)

�0

�1

�
h� h(�; �)

�
where 
�1 is a weighting matrix.
18The values for the ICL criterium in tables 8 and 12 will be included in the next version of the paper.
19Firms and retailers generally manufacture (sell) di¤erent products. However, for ease of exposition, we refer

to �rms (retailers) instead of manufacturing (selling) units of a speci�c good or service.
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since the value of production greatly varies across branches of activity. Therefore, when using

the number of �rms one is overrepresenting �rms with low production value. In applied work,

production (or expenditure) weighted shares are likely to be the main object of interest.

As stated above, the presented framework considers that each price spell is the result of one simple

price setting rule. We do not, however, directly observe to which group the observation precisely

belongs, although a model-based clustering procedure may be designed to classify the di¤erent

price spells into groups with di¤erent price setting behaviour. Speci�cally, for each individual, we

compute the conditional probability of belonging to a given price setting group. This probability,

along with a classi�cation rule20, allows us to assign �rms or price spells to di¤erent pricing rules.

The analysis of these clusters can be extremely illuminating. For example, we can determine the

relationship of these price setting groups with some other variables such as the type of good, which

allows us to compute the (value-added or expenditure) weighted shares of the di¤erent types of

agents. Moreover, as will be exploited in future work, duration models for the di¤erent economic

theory based clusters may be built.

3.2 Results for producer price data

In this section we try to account for the three abovementioned stylised facts in explaining the

empirical hazard for Spanish producer price data. The dataset on which we compute the hazard

function contains over 1.6 million price records for a 7 year period (1991:11-1999:2) and covers

over 99% of the production value of the PPI. This dataset is also employed in Álvarez, Burriel

and Hernando (2004), where a detailed explanation can be found.

To obtain the optimal number of di¤erent groups of Calvo agents in the producer price data

we compute the values for the di¤erent model selection criteria explained in the methodological

section. As table 8 shows, according to all the criteria used, in all cases it is optimal to estimate

a model composed of 3 types of standard Calvo agents, plus 1 group of annual Calvo agents.

Only in the case where we use the spells sample and include an annual Calvo model do the data

indicate that it is better to use a larger number of groups. However, given that the improvement

is marginal, we concentrate on the case of three groups of standard Calvo agents, plus one group

of annual Calvo agents.

The results of estimating our benchmark speci�cation, which includes three di¤erent groups of

Calvo agents plus one group of annual Calvo �rms, can be seen in the �rst and second columns

of table 9. In addition, in the third and fourth columns of this table we present results for a basic

20One possibility is to assign each observation to the group for which the maximum conditional probability is
obtained.
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Figure 8: Producer Prices: selection of the number of di¤erent Calvo agents.

number of
models

L-R AIC BIC L-R AIC BIC L-R AIC BIC L-R AIC BIC

1 ---- 138561 138564 ------ 1190130 1190141 ----- 128841 128849 ----- 1144757 1144767

2 18802 141933 141932 278917 1028769 1028769 22400 130690 130693 237919 984608 984613

3 1361 121146 121141 13601 897625 897622 -15010 121460 121459 7331 899516 899517

4 -3202 124352 124343 -4744 902373 902366 -2316 123781 123776 -6153 905673 905670

5 -772843 897199 897186 5178 897199 897187 -781675 905460 905451 217 905460 905453

standard + 1 annual Calvo standard Calvo

firms spells firms spells

Figure 9: Producer Prices: estimation of price setting models.

Price setting models

Weight
Calvo

Parameter
Mean

duration Weight
Calvo

Parameter
Mean

duration Weight
Calvo

Parameter
Mean

duration Weight
Calvo

Parameter
Mean

duration

Flexible Calvo 16.3% 0.11 1.1 56.9% 0.11 1.1 15.3% 0.07 1.1 56.7% 0.11 1.1
(0.38%) (0.01) (0.01) (0.48%) (0.00) (0.00) (0.32%) (0.01) (0.01) (0.49%) (0.00) (0.00)

Intermediate Calvo 45.9% 0.91 11.7 30.8% 0.89 8.9 57.7% 0.92 13.1 36.3% 0.90 10.1
(2.47%) (0.00) (0.68) (0.50%) (0.00) (0.14) (2.30%) (0.00) (0.42) (0.65%) (0.00) (0.13)

Sticky Calvo 29.3% 0.99 80.2 8.2% 0.98 42.1 27.0% 0.99 86.6 7.0% 0.98 44.8
(2.55%) (0.00) (9.67) (0.34%) (0.00) (1.50) (2.32%) (0.00) (11.62) (0.54%) (0.00) (3.16)

Annual Calvo 8.5% 0.28 16.7 4.0% 0.21 15.2
(0.25%) (0.01) (0.29) (0.10%) (0.01) (0.12)

Log likelihood -61056 -448655 -61243 -451160
Number of observations 26965 244864 26965 244864
Joint significance Wald test 94 2471 61 2557
p- value 0.00 0.00 0.00 0.00

firms
standard + 1 annual Calvo standard  Calvo

spells firms spells
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speci�cation in which there are no annual Calvo agents. In the case of both speci�cations, we

report the results of estimating two di¤erent samples: one with all the price spells included in the

PPI sample (we refer to this as "spells sample") and another including only one spell (randomly

selected) per �rm in the sample (we refer to this as "�rms sample"). As indicated in section 3.1,

using the �rms�sample corrects the over-representation of price spells with short durations. In all

cases, all parameters are individually and jointly signi�cant. Moreover, as Figure 10 shows, these

parsimonious models �t the data extremely well.

The results in table 9 indicate that the Calvo parameters (and the implied durations) are fairly

similar across samples and speci�cations. In all cases we �nd that the three types of standard

Calvo models can be characterized as follows: one group of �exible price setters with average

price durations of 1.1 months, one group of intermediate price setters with average price durations

between 9 and 13 months and one group of sticky price setters with average price durations

between 42 and 86 months21. In addition, the group of annual Calvo price setters has average

price durations close to the intermediate standard Calvo group, between 15 and 17 months. As

expected, the estimated weights of each group vary greatly across the two samples. In the case of

the �rm sample the largest group is the intermediate Calvo group (46-58%), followed by the sticky

Calvo (27-29%) and the �exible Calvo (15-16%) groups. On the other hand, in the case of the

sample with all spells the largest group is the �exible Calvo (57%), followed by the intermediate

Calvo (31-36%) and the sticky Calvo (7-8%). This result is not surprising given that shorter spells

tend to be highly over-represented in the spells sample since they occur more often. In both

samples, the annual Calvo price setters are the smallest group (4-9%).

The results just mentioned are based on the share of spells or �rms in the sample. However, it

might be more informative to know the share of the value of production in the aggregate economy

of each group. Using the procedure described in the previous section we have assigned each �rm

to a speci�c type of pricing rule. Then table 11 reports, for the �rm sample, the distribution of

�rms weighted according to the PPI weights across the main PPI components and the di¤erent

pricing rules.

The most important group in terms of the share of the value of production in the aggregate

economy is that of intermediate Calvo agents. This group represents 52% of the production value

in the economy and is characterised by mean and median durations of 12.3 and 9.2 months22. All

21Alternatively, since the hazard of each group is assymetric, it is also interesting to look at the median duration
of prices. We �nd shorter median durations for the intermediate and sticky Calvo groups (7-10 months and 30-60
months, respectively), but slightly longer median durations for the �exible Calvo group (1.3 months), while the
annual Calvo group has a slightly longer median duration (18 and 19 months).
22These are the mean and median durations derived from estimates in terms of number of �rms, as shown in

table 9.

20



Figure 10: Producer Prices: Hazard and Contributions to hazard
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Figure 11: Price setting models by PPI main industrial groups (using PPI weights)

non-durables
food

non-durables
non- food durables intermediate energy capital All groups

Price setting Model
Flexible Calvo 3.5% 1.3% 1.0% 8.9% 6.1% 1.3% 22.0%
Intermediate Calvo 8.8% 7.2% 7.4% 18.0% 4.2% 6.1% 51.6%
Sticky Calvo 2.8% 2.9% 3.6% 6.6% 0.4% 3.3% 19.5%
Annual Calvo 1.0% 1.1% 1.1% 2.0% 0.3% 1.2% 6.8%

Share of PPI 16.1% 12.4% 13.1% 35.5% 11.1% 11.8% 100.0%
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di¤erent types of goods are represented in this group, although the share of energy products is

particularly low. The second most important group corresponds to �exible Calvo agents, which

represent 22% of the PPI and have an average duration slightly above 1 month. The contribution

of energy goods and, to a lesser extent, other intermediate goods is particularly relevant, whereas

the share of capital and non food consumption goods is quite moderate. In turn, the share of

sticky Calvo agents is only slightly below that of �exible ones, although estimated durations are

very high. Producer of capital and consumer durable goods tend to use this pricing rule, which

is hardly used in energy branches. Finally, the share of agents using annual pricing is only 7%

and the corresponding duration is slightly less than one year and a half. This type of behaviour

is particularly frequent for producers of capital and consumption durables goods.

These production weighted shares may be compared with the �rm and spell shares shown in table

9. As expected, the share in terms of price spells of �exible Calvo agents is much higher than in

terms of �rms. In the economy as a whole, the weight is somewhat higher than in terms of �rms.

In turn, shares in terms of price spells of sticky Calvo agents is much lower than in terms of �rms.

Finally, using the number of �rms over-represents the share in terms of production value

The bottom part of �gure 10 presents the contributions of the di¤erent types of agents to the

hazard of the benchmark model. As can be seen, the downward slope of the hazard is, to a large

extent, explained by the aggregation of these Calvo agents: the weight of intermediate-Calvo price

setters relative to sticky-Calvo price setters is decreasing, being negligible for large horizons. The

existence of highly �exible Calvo price setters is accounted for by the very-�exible Calvo contracts.

Finally, the models that consider annual Calvo agents show that their share is modest, although

very important in explaining the spikes at 12, 24, 36,. . . months.

3.3 Results for consumer price data

This section examines the relevance of the three stylised facts in explaining the empirical hazard

for Spanish consumer price data. The dataset on which we compute the hazard function contains

over 1.1 million price records for a 9 year period (1993-2001) and covers around 70% of the

expenditure of the CPI basket. Energy products are not covered in this database. This dataset is

also employed in Álvarez and Hernando (2004), where a detailed analysis can be found.

Like in the producer price case, we start by �nding out the optimal number of di¤erent groups

of Calvo agents found in the data. Table 12 shows that, according to all the criteria used, it is

optimal to estimate a model composed of 3 types of standard Calvo agents, plus 1 group of annual

Calvo agents. This is similar to the PPI case.

22



Figure 12: Consumer Prices: selection of the number of di¤erent Calvo agents

number of
models

L-R AIC BIC L-R AIC BIC L-R AIC BIC L-R AIC BIC

1 ---- 138561 138564 ----- 877192 877197 ---- 128841 128849 ---- 1144757 1144767

2 18802 141933 141932 98259 778937 778938 22400 130690 130693 237919 984608 984613

3 56912 65595 65589 6058 772879 772880 40495 65955 65953 131051 775796 775797

4 -58754 124352 124343 -1555 774434 774435 -57822 123781 123776 -129873 905673 905670

5 -772843 897199 897186 749 773685 773686 -781675 905460 905451 217 905460 905453

firms spellsfirms spells

standard  Calvostandard + 1 annual Calvo

Figure 13: Consumer Prices: estimation of price-setting models.

Price setting models

Weight Calvo
Parameter

Mean
duration Weight Calvo

Parameter
Mean

duration Weight Calvo
Parameter

Mean
duration Weight Calvo

Parameter
Mean

duration

Flexible Calvo 20.9% 0.18 1.2 43.4% 0.12 1.1 20.9% 0.17 1.2 48.3% 0.24 1.3
(0.98%) (0.03) (0.04) (1.38%) (0.01) (0.01) (7.17%) (0.02) (0.03) (0.63%) (0.00) (0.01)

Intermediate Calvo 45.6% 0.89 8.8 44.0% 0.87 7.5 53.1% 0.92 13.0 41.9% 0.86 7.3
(2.03%) (0.01) (0.62) (1.25%) (0.00) (0.24) (2.24%) (0.00) (0.43) (0.63%) (0.00) (0.11)

Sticky Calvo 26.0% 0.98 47.2 9.5% 0.95 18.5 26.1% 0.98 47.0 9.8% 0.96 28.1
(2.41%) (0.00) (3.76) (0.17%) (0.00) (0.83) (2.34%) (0.00) (3.68) (0.43%) (0.00) (0.71)

Annual Calvo 7.5% 0.39 19.7 3.1% 0.38 19.5
(0.32%) (0.02) (0.62) (0.12%) (0.01) (0.37)

Log likelihood -33859 -390933 -34069 -392458
Number of observations 12494 179673 12494 179673
Joint significance Wald test 45 123 72 2785
p- value 0.00 0.00 0.00 0.00

firms
standard + 1 annual Calvo standard  Calvo

spellsspells firms
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The results of estimating the �nite mixture model for our benchmark speci�cation, which includes

three di¤erent groups of Calvo agents plus one group of annual Calvo �rms, can be seen in the

�rst and second columns of table 13. In addition, in the third and fourth columns of this table we

present results for a basic speci�cation in which annual Calvo agents are not considered. In all

cases, all parameters are individually and jointly signi�cant. Moreover, as Figure 14 shows, these

parsimonious models �t the data extremely well23. The results are very similar to the PPI case

and also very similar across samples and speci�cations. The three types of standard Calvo models

can be characterized as follows: one group of �exible price setters with average price durations

of 1.2-1.3 months , one group of intermediate price setters with average price durations between

7 and 11 months and one group of sticky price setters with average price durations between 42

and 86 months. In addition, the group of annual calvo price setters have average price durations

close to the intermediate standard Calvo group, between 15 and 17 months24. That is, we �nd on

average that CPI prices have shorter mean durations than PPI prices for the intermediate, sticky

and annual groups of Calvo agents, but slightly longer for the �exible Calvo agents.

The estimated weights of each group have a slightly di¤erent ordering in the �rms sample than for

the PPI case: the largest group is the intermediate Calvo group (42-61%), followed by the �exible

Calvo (22-23%) and the sticky Calvo (17-19%). The ordering is the same for the spells sample:

the largest group is the �exible Calvo (48%), followed by the intermediate Calvo (40-42%) and

the sticky Calvo (10%). In both samples, the annual Calvo price setters are the smallest group

(3-8%), marginally smaller than in the PPI data.

Table 15 reports, for the �rms sample, the distribution of �rms across the main CPI components

and the di¤erent pricing rules, weighted according to the CPI weights. Like in the PPI case, the

most important group in terms of share of household consumption is the intermediate Calvo agents,

with 60% of household expenditure. All di¤erent types of goods are represented in this group,

although the share of non energy industrial goods is particularly high and that of unprocessed food

particularly low. The rest of groups present similar shares which are slightly below 15%. Flexible

Calvo agents tend to sell unprocessed food and, to a lesser extent, processed food. Indeed, to

deal with the high frequency of price changes many statistical institutes collect unprocessed food

prices more than once a month. Sticky Calvo agents tend to sell non energy industrial goods and

services. Finally, annual Calvo price setters also tend to sell services and non energy industrial

goods.

23Note the quarterly spikes of the estimated hazard function. These correspond to the fact that some prices are
collected on a quarterly basis.
24Alternatively, since the hazard of each group is assymetric, it is also interesting to look at the median duration

of prices. We �nd shorter median durations for the intermediate and sticky Calvo groups (5-8 months and 18-35
months, respectively), but slightly longer median durations for the �exible Calvo group (1.4 months), while the
annual Calvo group has a slightly longer median duration (19 and 21 months).
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Figure 14: Consumer Prices: Hazard and Contributions to hazard.
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Figure 15: Price setting models by CPI main components (using CPI weights)

unprocessed
food

processed
food non energy services all

components

Price setting Model
Flexible Calvo 6.9% 4.5% 1.4% 0.8% 13.6%
Intermediate Calvo 5.7% 12.7% 22.9% 18.2% 59.5%
Sticky Calvo 0.2% 1.2% 6.1% 6.8% 14.3%
Annual Calvo 0.1% 0.5% 4.9% 7.2% 12.7%

Share of CPI 12.8% 18.8% 35.4% 33.0% 100.0%
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These expenditure weighted shares may be compared with �rm and spell shares. The weight in

terms of �rms and spells of intermediate and annual Calvo price setters is lower than in household

consumption. On the contrary, the share of �exible Calvo agents is higher in terms of spells and

�rms than in terms of total expenditure.

The bottom part of �gure 14 presents the contributions of the di¤erent types of agents to the

hazard of the benchmark model. The downward slope of the hazard corresponds mostly to the

behaviour of these Calvo agents: the weight of intermediate Calvo price setters relative to sticky

Calvo price setters is decreasing and is negligible for large horizons. The existence of highly �exible

retailers is explained by Calvo agents with very short durations. Finally, the models that consider

annual Calvo agents show that their share in the economy is relatively modest, although it is very

important in explaining the spikes at 12, 24, 36,. . . months.

4 Conclusions

In this paper we show that the common empirical �nding that hazard functions of price durations

are decreasing can be reconciled with standard models of price setting behaviour by allowing for

the existence of heterogenenus price setters. This idea is formalised by analysing the consequences

for the aggregate hazard rate of the coexistence of �rms with di¤erent pricing rules. In particular,

we derive analytically the form of this heterogeneity e¤ect for the most commonly used pricing

rules (Calvo, Truncated Calvo and Taylor) and �nd that the aggregate hazard is (nearly always)

decreasing.

Results are illustrated using Spanish producer and consumer price data. A parsimonious approach

is taken, assuming that the aggregate economy is composed of several Calvo agents with di¤erent

average price durations. Speci�cally, we estimate a �nite mixture of Calvo models considering

1, 2, 3, 4 and 5 groups and then choose the optimal model according to several model selection

criteria. We �nd that a very accurate representation of individual data is obtained by considering

just 4 groups of agents: one group of �exible Calvo agents -with average price duration slightly

over 1 month-, one group of intermediate Calvo agents -with average price duration around 10

months- and one group of sticky Calvo agents -with average price duration over 40 months- plus

an annual Calvo process -with average price duration around a year and a half.

In terms of the relative size of the groups, the largest is the intermediate Calvo group, accounting

for around 50% of the production value in the case of the PPI and 60% of consumer�s expenditure

in the case of the CPI. The �exible and sticky Calvo groups are roughly similar in size in terms

of the share of PPI (20%) and CPI (14%). Finally, the annual Calvo group is the smallest one,
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accounting for 7% of PPI and 13% of CPI. An analysis of the composition of the groups in terms

of the di¤erent types of goods and services provides interesting results. Speci�cally, we observe

that the �exible pricing rule is used mostly by producers of energy and intermediate goods and

by retailers of food products; the intermediate rule is used by all producers and retailers, except

energy producers and retailers of unprocessed food; and the sticky and annual Calvo pricing rules

are mainly used by producers of capital and consumer durable goods and by retailers of non-energy

goods and services.
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A Appendix: Continous time case.

In continous time, the derivative of the aggregate hazard is given by

@h(k)

@k
=
@h1(k)

@k
�(k) +

@h2(k)

@k
[1� �(k)] + @�(k)

@k
h1(k) +

@ [1� �(k)]
@k

h2(k) (6)

The derivative of the weight on the hazard of the �rst group is equal to @�(k)
@k

= ��(k) [1� �(k)] [h1 (k)� h2 (k)]
Substituting equation (??) into equation (6), we get the derivative of the hazard with respect to
k

@h(k)

@k
=

@h1(k)

@k
�(k) +

@h2(k)

@k
[1� �(k)] +H(k) (7)

where H(k) = ��(k) [1� �(k)]
�
h1(k)� h2(k)

�2 � 0
That is, the derivative of the aggregate hazard is a convex linear combination of the

derivatives of the individual hazards plus a heterogeneity e¤ect H(k), which is never positive.

This e¤ect disappears if there is no heterogeneity (h1(k) = h2(k)) or if ,for a given k,there are no

more �rms belonging to one group (�(k) = 0) or �(k) = 1).This corresponds to the well known

fact in the duration analysis literature that uncontrolled heterogeneity biases estimated hazard

functions towards negative duration dependence.

A necessary and su¢ cient condition for the derivative to be negative is that the heterogeneity

e¤ect (H(k)) is larger than the weighted sum of the derivatives of the individual hazards:

@h(k)

@k
� 0 iff

@h1(k)

@k
�(k) +

@h2(k)

@k
[1� �(k)] � jH(k)j (8)

B Appendix: Truncated Calvo agents

Alternatively, we could assume that the population of �rms is composed of two groups, each one

of them setting prices according to a di¤erent truncated Calvo mechanism. In this case, there are

three possible scenarios: 1) both groups have di¤erent Calvo parameters of the probability of not

changing prices before the truncation occurs, but equal period of truncation; 2) both groups have

equal Calvo parameters but di¤erent truncations; 3) each group has a di¤erent calvo parameter

and truncation point.

Case 1.
�
J1 = J2= J

�
& (�1 6= �2) : The Calvo parameter �i is di¤erent, but the truncation

point J is the same for both groups
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Figure 16: Case1 and 2: Hazard of 2 groups with Truncated Calvo price setting.
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density function: f i(k) =

8><>:
(1� �i) �k�1i for k = 1; :::; J � 1

�J�1i for k = J

0 for k > J

survival function: Si(k) =

(
�k�1i for k = 1; :::; J

0 for k > J

hazard: hi(k) =

(
(1� �i) for k = 1; :::; J � 1
1 for k = J

aggregate hazard: h(k) =

8><>:
�(k)(1� �1) + [1� �(k)] (1� �2) for k = 1; :::; J � 1

1 for k = J

and the change in the aggregate hazard as k changes

�h(k)

�k
=

8>>>><>>>>:
��(k)[1��(k)]

1��(k)�k (�1 � �2)2 � 0 for k = 1; :::; J � 1
1� �(k)[1��(k)]

1��(k)�k (�1 � �2)2 > 0 for k = J

�1 for k = J + 1

0 for k > J + 1

That is, in this case the aggregate hazard will be decreasing for all k, except for the last period

(J), when it will jump up to one.

Case 2.
�
J1 > J2

�
& (�1 > �2) : The calvo parameter �i and the truncation point Ji are di¤erent
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for both groups

aggregate hazard: h(k) =

8>>>><>>>>:
�(k)(1� �1) + [1� �(k)] (1� �2) for k = 1; :::; J2 � 1

�(k)(1� �1) + [1� �(k)] for k = J2

(1� �1) for k = J2 + 1; :::; J1 � 1
1 for k = J1

and the change in the aggregate hazard as k changes

�h(k)

�k
=

8>>>>>>>>>>><>>>>>>>>>>>:

��(k)[1��(k)]
1��(k)�k (�1 � �2)2 < 0 for k = 1; :::; J2 � 1
[1� �(k)] �2 > 0 for k = J2

� [1� �(k)] �1 < 0 for k = J2 + 1

0 for J1 > k > J2 + 1

1 for k = J1

�1 for k = J1 + 1

0 for k > J1 + 1

The aggregate hazard in this case is decreasing for the �rst (J2 � 1) periods and constant for
the periods (J2 + 2 until J1 � 1). In addition, the aggregate hazard will jump up in periods of
truncation, that is in periods J1 and J2. This can be seen in �gure (16).

Case 3:
�
J1 > J2

�
& (�1 = �2 = �) :

aggregate hazard: h(k) =

8>>>><>>>>:
(1� �) for k = 0; 1; :::; J2 � 1

�(1� �) + (1� �) = 1� �� for k = J2

(1� �) for k = J2 + 1; :::; J1 � 1
1 for k = J1

and the change in the aggregate hazard as k changes

�h(k)

�k
=

8>>>>>>>>>>><>>>>>>>>>>>:

0 for k = 0; 1; :::; J2 � 1
1� �� > 0 for k = J2

(1� �)� (1� ��) = �� (1� �) < 0 for k = J2 + 1

0 for J1 > k > J2 + 1

1 > 0 for k = J1

�1 < 0 for k = J1 + 1

0 for k > J1 + 1

In this case, the aggregate hazard will be constant everywhere, except for the truncation period
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of each group, when it will jump up.
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